Association between 25-OH-vitamin D and C-reactive protein as a marker of inflammation and cardiovascular risk in clinical practice

Author(s):  
Elena Hernández-Álvarez ◽  
Clara Pérez-Barrios ◽  
Inmaculada Blanco-Navarro ◽  
Belén Pérez-Sacristán ◽  
Encarnación Donoso-Navarro ◽  
...  

Background C-reactive protein is an acute phase response marker and, in an epidemiological context, a predictor of cardiovascular risk. 25-Hydroxy-vitamin D is the best indicator for vitamin D status, but it can be altered by the presence of acute phase response. Our aim was to evaluate the association between serum concentrations of 25-hydroxy-vitamin D and C-reactive protein to assist the interpretation of vitamin D status in a clinical context. Methods We evaluated retrospectively 5076 patients ( n = 4087 women) assessed for 25-hydroxy-vitamin D and C-reactive protein simultaneously. Subjects were classified according to the origin as hospitalized patients ( n = 410) and outpatients ( n = 4666). Outpatients included patients from specialized ( n = 3943) and primary ( n = 723) care. Serum 25-hydroxy-vitamin D was determined by using liquid chromatography and serum C-reactive protein by using immunoturbidimetry. Results Concentrations of 25-hydroxy-vitamin D and C-reactive protein were significantly different between hospitalized subjects and outpatients but not for specialized and primary care settings. Serum concentrations of 25-hydroxy-vitamin D decreased as C-reactive protein increased. Hospitalized patients with C-reactive protein concentrations >30 mg/L showed a significant reduction of 25-hydroxy-vitamin D. In outpatients with C-reactive protein within the reference range (≤10 mg/L), C-reactive protein concentrations were not significantly different for serum 25-hydroxy-vitamin D concentrations >37.5 nmol/L. Conclusions Our data question the reliability and usefulness of assessing 25-hydroxy-vitamin D status as a biomarker of nutritional status in patients displaying acute phase response, especially at concentrations of C-reactive protein >30 mg/L. In addition, the present study shows that in subjects displaying C-reactive protein values within the reference range, serum concentrations of 25-hydroxy-vitamin D >37.5 nmol/L were not associated with lower concentrations of cardiovascular risk (as assessed by C-reactive protein concentrations).

1990 ◽  
Vol 68 (21) ◽  
pp. 1083-1083 ◽  
Author(s):  
H. Tilg ◽  
J. Mair ◽  
M. Herold ◽  
W. E. Aulitzky ◽  
P. Lechleitner ◽  
...  

2020 ◽  
pp. 2199-2207
Author(s):  
Mark B. Pepys

The acute phase response—trauma, tissue necrosis, infection, inflammation, and malignant neoplasia induce a complex series of nonspecific systemic, physiological, and metabolic responses including fever, leucocytosis, catabolism of muscle proteins, greatly increased de novo synthesis and secretion of a number of ‘acute phase’ plasma proteins, and decreased synthesis of albumin, transthyretin, and high- and low-density lipoproteins. The altered plasma protein concentration profile is called the acute phase response. Acute phase proteins—these are mostly synthesized by hepatocytes, in which transcription is controlled by cytokines including interleukin 1, interleukin 6, and tumour necrosis factor. The circulating concentrations of complement proteins and clotting factors increase by up to 50 to 100%; some of the proteinase inhibitors and α‎1-acid glycoprotein can increase three- to fivefold; but C-reactive protein (CRP) and serum amyloid A protein (an apolipoprotein of high-density lipoprotein particles) are unique in that their concentrations can change by more than 1000-fold. C-reactive protein—this consists of five identical, nonglycosylated, noncovalently associated polypeptide subunits. It binds to autologous and extrinsic materials which contain phosphocholine, including bacteria and their products. Ligand-bound CRP activates the classical complement pathway and triggers the inflammatory and opsonizing activities of the complement system, thereby contributing to innate host resistance to pneumococci and probably to recognition and safe ‘scavenging’ of cellular debris. Clinical features—(1) determination of CRP in serum or plasma is the most useful marker of the acute phase response in most inflammatory and tissue damaging conditions. (2) Acute phase proteins may be harmful in some circumstances. Sustained increased production of serum amyloid A protein can lead to the deposition of AA-type, reactive systemic amyloid.


1985 ◽  
Vol 227 (3) ◽  
pp. 759-765 ◽  
Author(s):  
D Samols ◽  
S S MacIntyre ◽  
I Kushner

C-reactive protein (CRP) mRNA was assayed by cell-free translation of poly(A)-containing liver RNA isolated both from rabbits stimulated to undergo the acute-phase response and from unstimulated control rabbits. No CRP-related translation products were identified until the denaturant methylmercury hydroxide (CH3HgOH) was added to the RNA before cell-free translation. In the presence of the denaturant, a 24000-Da translation product was synthesized which was immunochemically identifiable as the CRP primary translation product. It is likely that rabbit CRP mRNA can form a stable intramolecular duplex which interferes with its translatability in vitro. The 24000-Da CH3HgOH-facilitated cell-free translation product was not detected in poly(A)-containing liver RNA from unstimulated animals, indicating that the concentration of translatable CRP mRNA was dramatically induced during the acute-phase response. On the basis of absorption experiments, the 24000-Da CRP primary translation product was immunochemically more closely related to denatured CRP than to native CRP.


1991 ◽  
Vol 81 (5) ◽  
pp. 677-683 ◽  
Author(s):  
Lindsay M. Weight ◽  
Donald Alexander ◽  
Peter Jacobs

1. It has been suggested that the physiological consequences of strenuous exercise are analogous to those of the acute-phase response. 2. In 70 male and 20 female competitive distance runners, a marked, but transient, neutrophil leucocytosis occurred immediately after these athletes completed a standard (42 km) marathon race. Concomitant significant increases were noted in the plasma cortisol levels, creatine kinase activity, C-reactive protein level, total protein level and albumin level (P <0.01). 3. The plasma fibrinogen, C-reactive protein and total protein concentrations were markedly increased both 24 h and 48 h after exercise (P <0.01). The serum haptoglobin level was significantly decreased after exercise (P <0.01), and increased 48 h later (P <0.05). There was no change in the serum iron level, total iron-binding capacity, per cent saturation of transferrin and serum ferritin level. 4. A significant increase in interleukin-1-type activity was demonstrated immediately and 24 h after exercise (P <0.01). 5. It is concluded that the metabolic sequelae of sustained exercise are similar, but not analogous, to the acute-phase response, and interleukin-1 probably plays a significant role in linking the haematological and immunological changes observed after sustained strenuous exercise.


HPB Surgery ◽  
1994 ◽  
Vol 8 (2) ◽  
pp. 129-131 ◽  
Author(s):  
Heikki Kiviniemi ◽  
Tatu Juvonen ◽  
Jyrki Mäkelä

Acute phase response after endoscopic retrogradic cholangiopancreaticography (ERCP) was studied in 42 patients with suspected pancreatic or biliary diseases. In uncomplicated cases acute phase response determined by serum C-reactive protein levels was rare and did not parallel the serum amylase or lipase levels. In three of the these 42 patients, post-ERCP pancreatitis developed and CRP levels elevated sharply and paralleled the degree of pancreatitis. Six additional patients outside of this prospective study with post-ERCP-pancreatitis and daily CRP determinations were used to determine the CRP-response curve in post-ERCP pancreatitis.


Sign in / Sign up

Export Citation Format

Share Document