Disruptive Technology as an Enabler of the Circular Economy: What Potential Does 3D Printing Hold?

2018 ◽  
Vol 60 (3) ◽  
pp. 112-132 ◽  
Author(s):  
Alysia Garmulewicz ◽  
Matthias Holweg ◽  
Hans Veldhuis ◽  
Aidong Yang

Three-dimensional (3D) printing has been widely identified as an emerging disruptive technology. This study examines how this technology could enable the circular economy by disrupting the existing materials value chain. Specifically, could this novel technology be used to locally manufacture new goods from local sources of recycled plastic waste, thereby offering benefits for the efficiency and effectiveness of materials cycling? This article uses the London metropolitan area—where system conditions already exist in the form of material flows, technology policy, and facilities—in order to assess 3D printing’s viability as an enabler of a circular economy at the local level. An analysis of stakeholder perceptions identifies economic, technological, social, organizational, and regulatory barriers to mainstream implementation, and their likelihood of being overcome.

2018 ◽  
Vol 60 (3) ◽  
pp. 95-111 ◽  
Author(s):  
Gregory Unruh

This article applies the Biosphere Rules—a biomimicry-inspired management framework for circular economy initiatives—to the emerging field of additive manufacturing and three-dimensional (3D) Printing, which are revolutionizing industrial sectors from medical devices to spare parts. They are also potentially keys in the emergence of a true circular economy that will bring about environmentally sustainable manufacturing. This article lays out an established strategy that can guide managers and policy makers in pursuit of a cradle-to-cradle economy.


Author(s):  
Hamidreza Mosleh ◽  
Shahab Aldin Nazeri ◽  
Mehdi Mehdizadeh ◽  
Fatemeh Moradi ◽  
Hoda Mosleh ◽  
...  

Background: Recent developments in 3D printing have gave orthopedic surgeons among a novel technology that has the ability to revolutionize preoperative planning. The appearance of 3D printing technology (3DPT) enables the digital preoperative plan & simulation to move from the virtual phase to the reality phase. Numerous fields of medicine are lately benefiting from the operate of 3D printing, including the arising part of 3D printing in orthopedic surgery. Methods: We searched on PubMed and Google Scholar databases in January 2020 to find papers and studies about using 3D printing in orthopedy for aim of preplanning. The key words for search were (“3D printing” OR “3D-printed Model” OR “three-dimensional Printer”) AND (“Orthopedy” OR “Orthopedics” OR “Orthopedics”) AND (“Surgery” OR “Operation”) AND (“Pre-planning” OR “Plan”) AND (“Fracture” OR “Trauma”) that we used compound. We exclude the papers which their titles or abstracts were not relevant. At last, we select the most related papers to use in this article. Results: The search on PubMed found 80 Papers and on Google Scholar found 104 papers. After excluding similar and unrelated papers, 44 papers were selected for this review article. Conclusion: Almost all studies have shown us that using a 3D model can have a very positive effect on the surgical process and its outcomes, as well as patient and surgeon satisfaction. Therefore, we anticipate that this technology will be used in many orthopedic surgeries in the near future.


2020 ◽  
Vol 20 (8) ◽  
pp. 5107-5111
Author(s):  
Kyu-Hyon Son ◽  
Jung-Hun Kim ◽  
Dong-Eun Kim ◽  
Min-Sik Kang ◽  
Joo-Heon Song ◽  
...  

Additive manufacturing or three-dimensional (3D) printing is considered a disruptive technology for producing components with topologically optimized complex geometries as well as functionalities that are not achievable by traditional methods. 3D printing is expected to revolutionize the manufacturing of components. While several 3D printing systems are available, printing based on fused-deposition modeling (FDM) using thermoplastics is particularly widespread because of the simplicity and potential applicability of the method. In this study, we report the analysis of correlation between contrast and component of polylactic acid (PLA) based composite for FDM 3D printing. The pre-fabricated white composite and black composite were mixed in the fraction of 100:0, 90:10, 75:25, 50:50, 25:75, and 0:100% (v/v) and the obtained mixture was extruded using HX-35 3D filament extrusion line. The samples in different contrast were printed in disk like shape, and the gray scale filaments and 3D printed samples were measured the morphology and components using a field emission scanning electron microscope and energy dispersive X-ray spectroscopy. The CIE-lab values of the samples were measured using a colorimeter and the correlation between CIE-lab values and the components were analyzed. Although the component of Ti was linearly increased, the CIE-lab values show a clear exponential increase by increasing the white composite.


Author(s):  
Yuan-Wei Zhang ◽  
Xin Xiao ◽  
Wen-Cheng Gao ◽  
Yan Xiao ◽  
Su-Li Zhang ◽  
...  

Abstract Background This present study is aimed to retrospectively assess the efficacy of three-dimensional (3D) printing assisted osteotomy guide plate in accurate osteotomy of adolescent cubitus varus deformity. Material and methods Twenty-five patients (15 males and 10 females) with the cubitus varus deformity from June 2014 to December 2017 were included in this study and were enrolled into the conventional group (n = 11) and 3D printing group (n = 14) according to the different surgical approaches. The operation time, intraoperative blood loss, osteotomy degrees, osteotomy end union time, and postoperative complications between the two groups were observed and recorded. Results Compared with the conventional group, the 3D printing group has the advantages of shorter operation time, less intraoperative blood loss, higher rate of excellent correction, and higher rate of the parents’ excellent satisfaction with appearance after deformity correction (P < 0.001, P < 0.001, P = 0.019, P = 0.023). Nevertheless, no significant difference was presented in postoperative carrying angle of the deformed side and total complication rate between the two groups (P = 0.626, P = 0.371). Conclusions The operation assisted by 3D printing osteotomy guide plate to correct the adolescent cubitus varus deformity is feasible and effective, which might be an optional approach to promote the accurate osteotomy and optimize the efficacy.


2021 ◽  
Vol 1 ◽  
pp. 100006
Author(s):  
Gargi Jani ◽  
Abraham Johnson ◽  
Jeidson Marques ◽  
Ademir Franco

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoyu Zhao ◽  
Ye Zhao ◽  
Ming-De Li ◽  
Zhong’an Li ◽  
Haiyan Peng ◽  
...  

AbstractPhotopolymerization-based three-dimensional (3D) printing can enable customized manufacturing that is difficult to achieve through other traditional means. Nevertheless, it remains challenging to achieve efficient 3D printing due to the compromise between print speed and resolution. Herein, we report an efficient 3D printing approach based on the photooxidation of ketocoumarin that functions as the photosensitizer during photopolymerization, which can simultaneously deliver high print speed (5.1 cm h−1) and high print resolution (23 μm) on a common 3D printer. Mechanistically, the initiating radical and deethylated ketocoumarin are both generated upon visible light exposure, with the former giving rise to rapid photopolymerization and high print speed while the latter ensuring high print resolution by confining the light penetration. By comparison, the printed feature is hard to identify when the ketocoumarin encounters photoreduction due to the increased lateral photopolymerization. The proposed approach here provides a viable solution towards efficient additive manufacturing by controlling the photoreaction of photosensitizers during photopolymerization.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3887
Author(s):  
Watcharapong Pudkon ◽  
Chavee Laomeephol ◽  
Siriporn Damrongsakkul ◽  
Sorada Kanokpanont ◽  
Juthamas Ratanavaraporn

Three-dimensional (3D) printing is regarded as a critical technology in material engineering for biomedical applications. From a previous report, silk fibroin (SF) has been used as a biomaterial for tissue engineering due to its biocompatibility, biodegradability, non-toxicity and robust mechanical properties which provide a potential as material for 3D-printing. In this study, SF-based hydrogels with different formulations and SF concentrations (1–3%wt) were prepared by natural gelation (SF/self-gelled), sodium tetradecyl sulfate-induced (SF/STS) and dimyristoyl glycerophosphorylglycerol-induced (SF/DMPG). From the results, 2%wt SF-based (2SF) hydrogels showed suitable properties for extrusion, such as storage modulus, shear-thinning behavior and degree of structure recovery. The 4-layer box structure of all 2SF-based hydrogel formulations could be printed without structural collapse. In addition, the mechanical stability of printed structures after three-step post-treatment was investigated. The printed structure of 2SF/STS and 2SF/DMPG hydrogels exhibited high stability with high degree of structure recovery as 70.4% and 53.7%, respectively, compared to 2SF/self-gelled construct as 38.9%. The 2SF/STS and 2SF/DMPG hydrogels showed a great potential to use as material for 3D-printing due to its rheological properties, printability and structure stability.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Young Hoon Jo ◽  
Seonghyuk Hong ◽  
Seong Yeon Jo ◽  
Yoon Mi Kwon

Abstract Three-dimensional (3D) digital technology is an essential conservation method that complements the traditional restoration technique of cultural artifacts. In this study, 3D scanning, virtual restoration modeling, and 3D printing were used as a noncontact approach for restoring a damaged stone-seated Bodhisattva (stone Buddha statue). First, a 3D model with an average point density of 0.2 mm was created by integrating the fixed high-precision scanning of the exterior and the handheld mid-precision scanning of the interior excavated hole. Using a 3D deterioration map of the stone Buddha statue, the area of the missing parts was measured to be 400.1 cm2 (5.5% of the total area). Moreover, 257.1 cm2 (64.2% of the missing part area) of four parts, including the head, surrounding area of the Baekho, right ear, and right eye, for which symmetry was applicable for modeling or there could be ascertainable historical evidence for the total missing parts, was selected for restoration. The virtual restoration of the missing parts of the stone Buddha statue was performed using a haptic modeling system in the following order. First, the location of the three fragments detached from the head was determined. Next, a reference model was selected, and its symmetrization and modification with respect to the original model were conducted. Further, estimation modeling and outer shape description were achieved through historical research and consultation with experts. The heuristic-based assembly suitability of the created virtual restoration model (461 cm3) was verified by design mockup printing and digital–analog simulation. In particular, to address assembly interference, the interface surface was modified and reprocessed several times. Accordingly, the volume of the final design mockup decreased by 5.2% (437 cm3). Photopolymerization 3D printing technology was used for the actual restoration of the stone Buddha statue, and considering the surface roughness, the layer thickness of the material used for restoration was set at 0.10 mm. Finally, the surface of the printed output was colored to prevent yellowing and joined to the missing parts of the stone Buddha statue. This study presents a remarkable case of shifting from the traditional manual-contact method to the contactless digital method for restoring artifacts and is expected to largely contribute to increasing the usability of digital technologies in the restoration of cultural artifacts.


Author(s):  
Celinda Palm ◽  
Sarah E. Cornell ◽  
Tiina Häyhä

AbstractThe fashion and textiles industry, and policymakers at all levels, are showing an increased interest in the concept of circular economy as a way to decrease business risks and negative environmental impacts. However, focus is placed mainly on the material ‘stuff’ of textile fashion and its biophysical harms. The current material focus has several shortcomings, because fashion is a social-ecological system and cannot be understood merely by addressing its environmental dimensions. In this paper, we rethink the fashion system from a critical social-ecological perspective. The driver-state-response framework shows social drivers and ecological impacts as an adaptive social-ecological system, exposing how these interacting aspects need to be addressed for sustainable and resilient implementation of circular economy. We show how current responses to global sustainability challenges have so far fallen short. Our overall aim is to expand possibilities for reframing responses that better reflect the complex links between the global fashion system, culture and creativity and the dynamics of the living planet. We argue that reducing planetary pressure from the global fashion and textiles industry requires greater recognition of the system’s social drivers with more emphasis on the many cross-scale links between social and ecological dimensions. Resilient decisions aiming for sustainable circularity of the fashion industry must therefore pay attention to social activities beyond the industry value chain, not just material flows within it.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 276
Author(s):  
Francesco Facchini ◽  
Giovanni Mummolo ◽  
Micaela Vitti

The sewage sludges are the byproducts of the wastewater treatment. The new perspective of the wastewater value chain points to a sustainable circular economy approach, where the residual solid material produced by sewage sludge treatments is a resource rather than a waste. A sewage sludge treatment system consists of five main phases; each of them can be performed by different alternative processes. Each process is characterized by its capability to recover energy and/or matter. In this paper, a state of the art of the sludge-to-energy and sludge-to-matter treatments is provided. Then, a scenario analysis is developed to identify suitable sewage sludge treatments plants that best fit the quality and flowrate of sewage sludge to be processed while meeting technological and economic constraints. Based on the scientific literature findings and experts’ opinions, the authors identify a set of reference initial scenarios and the corresponding best treatments’ selection for configuring sewage sludge treatment plants. The scenario analysis reveals a useful reference technical framework when circular economy goals are pursued. The results achieved in all scenarios ensure the potential recovery of matter and/or energy from sewage sludges processes.


Sign in / Sign up

Export Citation Format

Share Document