How Dangerous Is Looking Away From the Road? Algorithms Predict Crash Risk From Glance Patterns in Naturalistic Driving

Author(s):  
Yulan Liang ◽  
John D. Lee ◽  
Lora Yekhshatyan

Objective: In this study, the authors used algorithms to estimate driver distraction and predict crash and near-crash risk on the basis of driver glance behavior using the data set of the 100-Car Naturalistic Driving Study. Background: Driver distraction has been a leading cause of motor vehicle crashes, but the relationship between distractions and crash risk lacks detailed quantification. Method: The authors compared 24 algorithms that varied according to how they incorporated three potential contributors to distraction—glance duration, glance history, and glance location—on how well the algorithms predicted crash risk. Results: Distraction estimated from driver eye-glance patterns was positively associated with crash risk. The algorithms incorporating ongoing off-road glance duration predicted crash risk better than did the algorithms incorporating glance history. Augmenting glance duration with other elements of glance behavior—1.5th power of duration and duration weighted by glance location—produced similar prediction performance as glance duration alone. Conclusions: The distraction level estimated by the algorithms that include current glance duration provides the most sensitive indicator of crash risk. Application: The results inform the design of algorithms to monitor driver state that support real-time distraction mitigation systems.

Author(s):  
Grace Ashley ◽  
Osama A. Osman ◽  
Sherif Ishak ◽  
Julius Codjoe

According to NHTSA, traffic accidents cost the United States billions of U.S. dollars each year. Intersection accidents alone accounted for 23% of the 32,675 motor crash deaths in 2014. With the advent of the largest naturalistic driving data set in the United States collected by the SHRP2 Naturalistic Driving Study project, this study performs a crash-only analysis to identify driver-, vehicle-, and roadway-related factors that affect the driving risk at different location types using a machine learning tool. The study then analyzes the most important factors obtained from the machine learning analysis to identify how they affect crash risk. The results, in order of importance of variables, were driver behavior, locality, lane occupied, alignment, and through travel lanes. Also, drivers who violated traffic signals were four times more likely to be involved in a crash than drivers who did not. Those who violated stop signs were two times more likely to be involved in crashes than those who did not. Drivers performing visual-manual (VM) tasks at uncontrolled intersections were 2.7 times more likely to be involved in crashes than those who did not engage in these tasks. At nonintersections, drivers who performed VM tasks were 3.4 times more likely to be involved in crashes than drivers who did not. These findings add to the evidence that the establishment of safety awareness programs geared toward intersection safety is imperative.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Cynthia Owsley ◽  
Thomas Swain ◽  
Rong Liu ◽  
Gerald McGwin ◽  
Mi Young Kwon

Abstract Background Older drivers have a crash rate nearly equal to that of young drivers whose crash rate is the highest among all age groups. Contrast sensitivity impairment is common in older adults. The purpose of this study is to examine whether parameters from the photopic and mesopic contrast sensitivity functions (CSF) are associated with incident motor vehicle crash involvement by older drivers. Methods This study utilized data from older drivers (ages ≥60 years) who participated in the Strategic Highway Research Program Naturalistic Driving Study, a prospective, population-based study. At baseline participants underwent photopic and mesopic contrast sensitivity testing for targets from 1.5–18 cycles per degree. Model fitting generated area under the log CSF (AULCSF) and peak log sensitivity. Participant vehicles were instrumented with sensors that captured continuous driving data when the vehicle was operating (accelerometers, global positioning system, forward radar, 4-channel video). They participated for 1–2 years. Crashes were coded from the video and other data streams by trained analysts. Results The photopic analysis was based on 844 drivers, and the mesopic on 854 drivers. Photopic AULCSF and peak log contrast sensitivity were not associated with crash rate, whether defined as all crashes or at-fault crashes only (all p > 0.05). Mesopic AULCSF and peak log sensitivity were associated with an increased crash rate when considered for all crashes (rate ratio (RR): 1.36, 95% CI: 1.06–1.72; RR: 1.28, 95% CI: 1.01–1.63, respectively) and at-fault crashes only (RR: 1.50, 95% CI: 1.16–1.93; RR: 1.38, 95% CI: 1.07–1.78, respectively). Conclusions Results suggest that photopic contrast sensitivity testing may not help us understand future crash risk at the older-driver population level. Results highlight a previously unappreciated association between older adults’ mesopic contrast sensitivity deficits and crash involvement regardless of the time of day. Given the wide variability of light levels encountered in both day and night driving, mesopic vision tests, with their reliance on both cone and rod vision, may be a more comprehensive assessment of the visual system’s ability to process the roadway environment.


Author(s):  
Nipjyoti Bharadwaj ◽  
Praveen Edara ◽  
Carlos Sun

Identification of crash risk factors and enhancing safety at work zones is a major priority for transportation agencies. There is a critical need for collecting comprehensive data related to work zone safety. The naturalistic driving study (NDS) data offers a rare opportunity for a first-hand view of crashes and near-crashes (CNC) that occur in and around work zones. NDS includes information related to driver behavior and various non-driving related tasks performed while driving. Thus, the impact of driver behavior on crash risk along with infrastructure and traffic variables can be assessed. This study: (1) investigated risk factors associated with safety critical events occurring in a work zone; (2) developed a binary logistic regression model to estimate crash risk in work zones; and (3) quantified risk for different factors using matched case-control design and odds ratios (OR). The predictive ability of the model was evaluated by developing receiver operating characteristic curves for training and validation datasets. The results indicate that performing a non-driving related secondary task for more than 6 seconds increases the CNC risk by 5.46 times. Driver inattention was found to be the most critical behavioral factor contributing to CNC risk with an odds ratio of 29.06. In addition, traffic conditions corresponding to Level of Service (LOS) D exhibited the highest level of CNC risk in work zones. This study represents one of the first efforts to closely examine work zone events in the Transportation Research Board’s second Strategic Highway Research Program (SHRP 2) NDS data to better understand factors contributing to increased crash risk in work zones.


2017 ◽  
Vol 63 ◽  
pp. 187-194 ◽  
Author(s):  
Raha Hamzeie ◽  
Peter T. Savolainen ◽  
Timothy J. Gates

Author(s):  
Suzanne E. Lee ◽  
Thomas A. Dingus ◽  
Sheila G. Klauer ◽  
Vicki L. Neale ◽  
Jeremy Sudweeks

The 100-Car Naturalistic Driving Study was the first large-scale instrumented vehicle study with no special driver instructions, unobtrusive data collection instrumentation, and no in-vehicle experimenter. The final data set includes approximately 2,000,000 vehicle miles, almost 43,000 hours of data, 241 primary and secondary drivers, 12 to 13 months of data collection for each vehicle, and data from a highly capable instrumentation system. In addition, 78 of 102 vehicles were privately owned and 22 were leased. After 12 months, leased vehicles were provided to 22 private vehicle drivers who then drove the leased vehicles for an additional four weeks. Driving performance for the same drivers in familiar and unfamiliar instrumented vehicles was then compared. Results provided evidence of increased relative risk for the same driver for weeks 1 through 4 of driving an unfamiliar leased vehicle as compared to the same period of driving their privately owned vehicle.


Author(s):  
Peter R. Bakhit ◽  
BeiBei Guo ◽  
Sherif Ishak

Distracted driving behavior is a perennial safety concern that affects not only the vehicle’s occupants but other road users as well. Distraction is typically caused by engagement in secondary tasks and activities such as manipulating objects and passenger interaction, among many others. This study provides an in-depth analysis of the increased crash/near-crash risk associated with different secondary tasks using the largest real-world naturalistic driving dataset (SHRP2 Naturalistic Driving Study). Several statistical and data-mining techniques were developed to analyze the distracted driving and crash risk. First, a bivariate probit model was constructed to investigate the relationship between engagement in a secondary task and the safety-critical events likelihood. Subsequently, two different techniques were implemented to quantify the increased crash/near-crash risk because of involvement in a particular secondary task. The first technique used the baseline-category logits model to estimate the increased crash risk in terms of conditional odds ratios. The second technique used the a priori association rule mining algorithm to reveal the risk associated with each secondary task in terms of support, confidence, and lift indexes. The results indicate that reaching for objects, manipulating objects, reading, and cell phone texting are the highest crash risk factors among various secondary tasks. Recognizing the effect of different secondary tasks on traffic safety in a real-world environment helps legislators enact laws that reduce crashes resulting from distracted driving, as well as enabling government officials to make informed decisions about the allocation of available resources to reduce roadway crashes and improve traffic safety.


Author(s):  
Fangda Zhang ◽  
Shashank Mehrotra ◽  
Shannon C. Roberts

Motor vehicle crashes are the leading cause of death for 15 to 20-year olds. Young/novice drivers have long been thought to be vulnerable to the impact of peer passengers, and thus have a higher crash risk. It has been proven that perceived risky behavior of close friends was the best psychosocial predictor of risk. Additionally, young drivers (18-20 years) have the highest involvement in distraction-related crashes. The goal of this study was to examine the effect of social influence and driver distraction on young drivers’ behavior. Twenty-four pairs of participants took part in the study. Participants drove in pairs and by themselves while completing four distraction tasks. Results showed that the presence of a passenger did not show statistical significance related to drivers’ behavior. However, other social influence factors did significantly impact drivers’ behavior, including stimulating companionship, type of friendship, and their interactions.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdul-Basit Issah

PurposeThe paper empirically investigates how family firms appropriate acquired resources to become more innovative in the context of merger waves. It draws on resource-based view and the theory of first mover (dis)advantages to examine the implications of the timing of acquisitions on innovation in family firms.Design/methodology/approachThe paper uses a panel data set of Standard & Poor's (S&P) 500 manufacturing firms followed over a period of 31 years.FindingsThe study finds empirical support for the predictions that family firms are more able to utilize acquired resources better than nonfamily firms. Furthermore, targets acquired during the upswing of a merger wave are more valuable to family firms and associated with more innovation than for nonfamily firms.Originality/valueThe paper establishes that resources acquired during the upswing of a merger wave are more valuable, provide better resource synergies and impact innovation positively in family firms than nonfamily firms. Second, the paper makes an empirical contribution that family firms absorb external resources markedly differently and more efficiently than nonfamily firms. Third, the paper enhances a better understanding of the influence of family ownership on the relationship between acquisitions and innovation outputs.


Sign in / Sign up

Export Citation Format

Share Document