A Comparison of Kinesthetic-Tactual and Visual Displays via a Critical Tracking Task

Author(s):  
Richard J. Jagacinski ◽  
Dwight P. Miller ◽  
Richard D. Gilson

The present study investigated the feasibility of using the critical tracking task to evaluate kinesthetic-tactual displays. Subjects attempted to control a first-order unstable system with a continuously decreasing time constant by using either visual or tactual unidimensional displays. In addition, display augmentation was introduced in both modalities in the form of velocity quickening. For these unoptimized displays, visual tracking performance was better than tactual tracking, and velocity quickening improved the critical tracking scores for visual and tactual tracking about equally. Comparing across modalities, tactually quickened tracking performance was approximately equal to visually unquickened tracking. The present results suggest that the critical task methodology holds considerable promise for evaluating kinesthetic-tactual displays and that tactual tracking performance under certain conditions may yield results comparable to those of visual tracking.

2021 ◽  
Author(s):  
Jun Maruta ◽  
Lisa A Spielman ◽  
Jamshid Ghajar

ABSTRACT Introduction Cognitive processes such as perception and reasoning are preceded and dependent on attention. Because of the close overlap between neural circuits of attention and eye movement, attention may be objectively quantified with recording of eye movements during an attention-dependent task. Our previous work demonstrated that performance scores on a circular visual tracking task that requires dynamic synchronization of the gaze with the target motion can be impacted by concussion, sleep deprivation, and attention deficit/hyperactivity disorder. The current study examined the characteristics of performance on a standardized predictive visual tracking task in a large sample from a U.S. Military population to provide military normative data. Materials and Methods The sample consisted of 1,594 active duty military service members of either sex aged 18-29 years old who were stationed at Fort Hood Army Base. The protocol was reviewed and approved by the U.S. Army Medical Research and Materiel Command Institutional Review Board. Demographic, medical, and military history data were collected using questionnaires, and performance-based data were collected using a circular visual tracking test and Trail Making Test. Differences in visual tracking performance by demographic characteristics were examined with a multivariate analysis of variance, as well as a Kolmogorov-Smirnov test and a rank-sum test. Associations with other measures were examined with a rank-sum test or Spearman correlations. Results Robust sex differences in visual tracking performance were found across the various statistical models, as well as age differences in several isolated comparisons. Accordingly, norms of performance scores, described in terms of percentile standings, were developed adjusting for age and sex. The effects of other measures on visual tracking performance were small or statistically non-significant. An examination of the score distributions of various metrics suggested that strategies preferred by men and women may optimize different aspects of visual tracking performance. Conclusion This large-scale quantification of attention, using dynamic visuomotor synchronization performance, provides rigorously characterized age- and sex-based military population norms. This study establishes analytics for assessing normal and impaired attention and detecting changes within individuals over time. Practical applications for combat readiness and surveillance of attention impairment from sleep insufficiency, concussion, medication, or attention disorders will be enhanced with portable, easily accessible, fast, and reliable dynamic eye-tracking technologies.


Author(s):  
Liang-Chien Liu ◽  
Ping-Han Yang ◽  
Shih-Chi Liao ◽  
Bing-Peng Li ◽  
Fu-Cheng Wang ◽  
...  

This article presents the development of a visual-servo filming robot for dolly & truck style camera movement in filming applications. The robot was implemented with a fast-response slider as the upper stage on top of the slow-response tracked robot body as the lower stage, to improve target tracking performance. A new switching controller was developed, which controlled the stages’ motions by balancing and adjusting the weights of vision error and slider’s noncentering error of the upper stage, thus achieving tracking performance better than the traditional master–slave control strategy. The simulations were carried out to evaluate the tracking performance of the model, particularly focusing on evaluating how the dual stage improves the overall response of the model. The similar evaluation was executed experimentally as well. Both results confirm that the fast-response characteristics of the upper stage can compensate the slow dynamics of lower stage, the tracked robot which is inevitably heavy due to its composition.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mohammad Ahmadian ◽  
Sohyla Reshadat ◽  
Nader Yousefi ◽  
Seyed Hamed Mirhossieni ◽  
Mohammad Reza Zare ◽  
...  

Due to complex composition of leachate, the comprehensive leachate treatment methods have been not demonstrated. Moreover, the improper management of leachate can lead to many environmental problems. The aim of this study was application of Fenton process for decreasing the major pollutants of landfill leachate on Kermanshah city. The leachate was collected from Kermanshah landfill site and treated by Fenton process. The effect of various parameters including solution pH, Fe2+and H2O2dosage, Fe2+/H2O2molar ratio, and reaction time was investigated. The result showed that with increasing Fe2+and H2O2dosage, Fe2+/H2O2molar ratio, and reaction time, the COD, TOC, TSS, and color removal increased. The maximum COD, TOC, TSS, and color removal were obtained at low pH (pH: 3). The kinetic data were analyzed in term of zero-order, first-order, and second-order expressions. First-order kinetic model described the removal of COD, TOC, TSS, and color from leachate better than two other kinetic models. In spite of extremely difficulty of leachate treatment, the previous results seem rather encouraging on the application of Fenton’s oxidation.


1982 ◽  
Vol 55 (2) ◽  
pp. 615-622 ◽  
Author(s):  
Ian M. Franks

The first phase of the experiment was undertaken to examine the response changes that occur when a subject learns to track a repeating sequence that is embedded in a stimulus signal. The subject's tracking performance as measured by consistency and time-lag indices improved despite having no reportable knowledge of the repeating segment of the stimulus signal. The second phase investigated the perceptual changes that accompany the learning of the tracking task. It appeared that a subject's perception of the speed of a stimulus sequence while tracking varied depended upon the familiarity of the specific pattern of movements that comprised the signal.


2020 ◽  
Vol 1 (2) ◽  
pp. 54-62
Author(s):  
Naser Al Amery ◽  
Hussein Rasool Abid ◽  
Shaobin Wang ◽  
Shaomin Liu

In this study, two improved versions of UiO-66 were successfully synthesised. Modified UiO-66 and UiO-66-Ce were characterised to confirm the integrity of the structure, the stability of functional groups on the surface and the thermal stability. Activated samples were used for removal harmful anionic dye (methyl orange) (MO) from wastewater. Batch adsorption process was relied to investigate the competition between those MOFs for removing MO from aqueous solution. Based on the results, at a higher initial concentration, the maximum MO uptake was achieved by UiO-66-Ce which was better than modified-UiO-66. They adsorbed 71.5 and 62.5 mg g-1 respectively. Langmuir and Freundlich isotherms were employed to simulate the experimental data. In addition, Pseudo first order and Pseudo second order equations were used to describe the dynamic behaviour of MO through the adsorption process. The high adsorption capacities on these adsorbents can make them promised adsorbents in industrial areas.


2021 ◽  
Author(s):  
Richard Czikhardt ◽  
Juraj Papco ◽  
Peter Ondrejka ◽  
Peter Ondrus ◽  
Pavel Liscak

<p>SAR interferometry (InSAR) is inherently a relative geodetic technique requiring one temporal and one spatial reference to obtain the datum-free estimates on millimetre-level displacements within the network of radar scatterers. To correct the systematic errors, such as the varying atmospheric delay, and solve the phase ambiguities, it relies on the first-order estimation network of coherent point scatterers (PS).</p><p>For vegetated and sparsely urbanized areas, commonly affected by landslides in Slovakia, it is often difficult to construct a reliable first-order estimation network, as they lack the PS. Purposedly deploying corner reflectors (CR) at such areas strengthens the estimation network and, if these CR are collocated with a Global Navigation Satellite Systems (GNSS), they provide an absolute geodetic reference to a well-defined terrestrial reference frame (TRF), as well as independent quality control.</p><p>For landslides, line-of-sight (LOS) InSAR displacements can be difficult to interpret. Using double CR, i.e. two reflectors for ascending/descending geometries within a single instrument, enables the assumption-less decomposition of the observed cross-track LOS displacements into the vertical and the horizontal displacement components.</p><p>In this study, we perform InSAR analysis on the one-year of Sentinel-1 time series of five areas in Slovakia, affected by landslides. 24 double back-flipped trihedral CR were carefully deployed at these sites to form a reference network, guaranteeing reliable displacement information over the critical landslide zones. To confirm the measurement quality, we show that the temporal average Signal-to-Clutter Ratio (SCR) of the CR is better than 20 dB. The observed CR motions in vertical and east-west directions vary from several millimetres up to 3 centimetres, with average standard deviation better than 0.5 mm.<br>Repeated GNSS measurements of the CR confirm the displacement observed by the InSAR, improve the positioning precision of the nearby PS, and attain the transformation into the national TRF.</p>


Sign in / Sign up

Export Citation Format

Share Document