scholarly journals Enhancing acidic dye adsorption by modified UiO-66

2020 ◽  
Vol 1 (2) ◽  
pp. 54-62
Author(s):  
Naser Al Amery ◽  
Hussein Rasool Abid ◽  
Shaobin Wang ◽  
Shaomin Liu

In this study, two improved versions of UiO-66 were successfully synthesised. Modified UiO-66 and UiO-66-Ce were characterised to confirm the integrity of the structure, the stability of functional groups on the surface and the thermal stability. Activated samples were used for removal harmful anionic dye (methyl orange) (MO) from wastewater. Batch adsorption process was relied to investigate the competition between those MOFs for removing MO from aqueous solution. Based on the results, at a higher initial concentration, the maximum MO uptake was achieved by UiO-66-Ce which was better than modified-UiO-66. They adsorbed 71.5 and 62.5 mg g-1 respectively. Langmuir and Freundlich isotherms were employed to simulate the experimental data. In addition, Pseudo first order and Pseudo second order equations were used to describe the dynamic behaviour of MO through the adsorption process. The high adsorption capacities on these adsorbents can make them promised adsorbents in industrial areas.

2020 ◽  
Vol 168 ◽  
pp. 00026
Author(s):  
Liliia Frolova ◽  
Mykola Kharytonov ◽  
Iryna Klimkina ◽  
Oleksandr Kovrov ◽  
Andrii Koveria

Plasma method is used to synthesize manganese ferrite. The basic properties of ferrite are determined by IR spectroscopy, UV spectroscopy, X-ray phase analysis, vibration magnetometry. The paper shows that the use of magnetically controlled sorbent allows to purify waste waters from chromium (III). The process of adsorption of chromium cations (III) is investigated. The kinetics of the process is studied. To describe the equilibrium isotherms, the experimental data are analysed by the models of Langmuir, Freundlich isotherms. Pseudo-first order, pseudo-second-order, and Weber-Morris are used to elucidate the kinetic parameters and mechanism of the adsorption process. It has been established that the removal of Cr (III) cations is described by the pseudo-second order of the Langmuir reaction and mechanism.


2008 ◽  
Vol 6 (4) ◽  
pp. 581-591 ◽  
Author(s):  
Lyudmila Belyakova ◽  
Oleksandra Shvets ◽  
Diana Lyashenko

AbstractThe present work investigates the adsorptive interactions of Hg(II) ions in aqueous medium with hydroxylated silica, aminopropylsilica and silica chemically modified by β-cyclodextrin. Batch adsorption studies were carried out with various agitation times and mercury(II) concentrations. The maximum adsorption was observed within 15–30 min of agitation. The kinetics of the interactions, tested with the model of Lagergren for pseudo-first and pseudo-second order equations, showed better agreement with first order kinetics (k1 = 3.4 ± 0.2 to 5.9 ± 0.3 min−1). The adsorption data gave good fits with Langmuir isotherms. The results have shown that β-cyclodextrin-containing adsorbent has the largest adsorption specificity to Hg(II): K L = 4125 ± 205 mmol−1. “β-cyclodextrin-NO3-” inclusion complexes with ratio 1: 1 and super molecules with composition C42H70O35 ⊎ 3 Hg(NO3)2 are formed on the surface of β-cyclodextrin-containing silica.


2022 ◽  
Author(s):  
Mahboobeh Monjezi ◽  
Vahid Javanbakht

Abstract Geopolymers as sustainable and environmentally friendly “green materials”, can be synthesized by utilizing waste material and by-products. A porous geopolymer foam adsorbent based on ZSM-5 zeolite was prepared using templating emulsion/chemical foaming method in different conditions and used for dye removal in batch and continuous systems. The parameters affecting the dye adsorption including temperature, concentration, and pH, kinetics, isotherm, and thermodynamics of the process were investigated. The results of the geopolymer foam synthesis showed that thermal pretreatment of the zeolite has a positive effect on the strength and adsorption capacity. Moreover, the increase in sodium silicate more than the stoichiometric reduces the strength and adsorption capacity. The findings obtained from the batch adsorption process showed that the adsorption kinetics of the pseudo-second-order model and the adsorption isotherm of the Temkin model is adjusted with the experimental data. Thermodynamic results indicated that the process of dye adsorption with geopolymer foam is exothermic. The results from continuous experiments indicated more compatibility of the adsorption process with the models of Thomas and Bohart-Adams. The maximum adsorption capacity of methylene blue in batch and continuous processes was 9.82 and 8.17 mg/g. The adsorbent reduction was performed successfully by chemical and thermal processes.


2011 ◽  
Vol 233-235 ◽  
pp. 1972-1980 ◽  
Author(s):  
Yu Bin Tang ◽  
Fang Yu ◽  
Fang Yan Chen ◽  
Cheng Chen

Rectorite (REC), humic acid (HA) and polyvinyl alcohol (PVA) were used to prepare microspheres. Batch adsorption experiments of Pb2+ion on to the microspheres were performed. The results obtained indicate that adsorption time, the microspheres dosage and temperature were the main factors influencing the adsorptive capacities. The adsorption data for Pb2+ion were well described by the Freundlich, Langmuir and Temkin models. The kinetic experimental data properly correlated with the pseudo-first-order model, pseudo-second-order model and Elovich equation. The adsorption process is spontaneous, endothermic and out-of-order. The whole adsorption process is mainly controlled by entropies. The adsorption can be classified as chemical adsorption. The mechanisms for the adsorption of Pb2+ion on to the microspheres involved ion-exchange adsorption of Pb2+or the formation of complex compound. Under the experimental conditions employed, the removal of Pb2+ion attained value of 96.05%.


Author(s):  
Ebenezer Olujimi Dada ◽  
Ilesanmi Ademola Ojo ◽  
Abass Olanrewaju Alade ◽  
Tinuade Jolaade Afolabi ◽  
Omotayo Sharafdeen Amuda ◽  
...  

Matured flamboyant pods (FBP) activated with ZnCl2 were used for batch adsorption of Bromophenol blue (BPB) dye under the effects of concentration (10-200 ppm), contact time (20-300 min), biosorbent dosage (20-120 mg) and particle size (300-850 µm). The data obtained were fitted to Langmuir and Freundlich isotherm models as well as pseudo-first-order (PFO), pseudo-second-order (PSO) and Elovich kinetic models. The highest adsorption capacity and removal efficiency of 7.5762 mg/g and 75.76%, respectively, were obtained under the effects of initial dye concentrations. The correlation coefficient (R2) for the Langmuir and Freundlich isotherms are in the range 0.9938-0.9979 and 0.9895-0.9953, respectively, while, R2, in the ranges 0.5931-0.815, 0.9962-1.000 and 0.8046-0.8828, were obtained for the PFO, PSO, and Elovich kinetic models, respectively. The order of fit of the kinetic models is PSO > Elovich > PFO. The study suggests flamboyant pod as promising biomass for the remediation of dye-bearing industrial effluents.


Author(s):  
Meryem Bounaas ◽  
Abdallah Bouguettoucha ◽  
Derradji Chebli ◽  
Abdelbaki Reffas ◽  
José Manuel Gatica ◽  
...  

Abstract The removal of Methylene blue (MB) from aqueous medium using alkaline modified Maclura pomifera (NaOH-MMP) has been studied in this work. Results showed that a pH value of 6 was favorable for the adsorption of MB. Rate constants of pseudo-first-order, pseudo-second-order and nth kinetic model were determined to analyze the dynamic of the adsorption process; they showed that adsorption kinetics followed a pseudo-second-order and nth kinetic models. The Sips isotherm model was found to be the most relevant to describe MB sorption onto NaOH-MMP with a correlation factor R2 > 0.999. The adsorption capacity of NaOH-MMP was found to be 160 mg g−1 at 25 °C, confirming its biosorbent efficiency for the removal of MB dye from aqueous solutions. Thermodynamic parameters indicated that the MB adsorption onto adsorbent was feasible in nature, spontaneous, and exothermique.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1262 ◽  
Author(s):  
Ainoa Murcia-Salvador ◽  
José A. Pellicer ◽  
María Isabel Rodríguez-López ◽  
Vicente Manuel Gómez-López ◽  
Estrella Núñez-Delicado ◽  
...  

Eggshell, a waste material from food manufacturing, can be used as a potential ecofriendly adsorbent for the elimination of textile dyes from water solutions. The adsorption process was evaluated varying factors such as initial dye load, contact time, pH, quantity of adsorbent, and temperature. The initial dye load (Direct Blue 78) was in the range of 25–300 mg/L. The kinetics of adsorption were analyzed using different models, such as pseudo-first-order, pseudo-second-order, and intraparticle diffusion model. Also, the experimental data at equilibrium were studied using Freundlich, Langmuir, and Temkin isotherms. The kinetics followed pseudo-second-order, then pseudo-first-order, and finally the model of intraparticle diffusion. The results obtained for data at equilibrium follow the order: Freundlich > Langmuir > Temkin. The adsorption equilibrium showed a maximum capacity of adsorption (qmax) of 13 mg/g at pH 5, and using 0.5 g of eggshell. Dye adsorption was enhanced with increasing temperatures. The thermodynamic study revealed the spontaneity and endothermic nature of the adsorption process. The desorption study shows that the eggshell could be reused in different adsorption/desorption cycles. A novel advanced oxidation process could degrade more than 95% of the dye. The results show that eggshell is a waste material useful to remove hazardous dyes from wastewater, which may alleviate the environmental impact of dyeing industries.


2020 ◽  
Vol 2 (1) ◽  
pp. 36-49
Author(s):  
Naser Al Amery ◽  
Hussein Rasool Abid ◽  
Shaobin Wang ◽  
Shaomin Liu

In this study, three improved versions of UiO-66 metal organic frameworks (MOFs) were synthesised successfully: Different ratios of Ca+2/Zr+4 were used to synthesise UiO-66, UiO-66-10%Ca and UiO-66-30%Ca. Batch adsorption experiments were achieved to remove MB from wastewater by UiO-66-Ca. UiO-66-10%Ca exhibited the highest adsorption capacity with maximum  MB adsorption capacity of 15 mg. g–1 in UiO-66-30%Ca while UiO-66 demonstrated lower MB loading. Langmuir and Freundlich models have been employed to describe isotherms. A kinetics study indicated pseudo first-order and pseudo second-order equations. In addition, an intraparticle diffusion model was utilised. The results presented here may facilitate the further enhancement of UiO-66 MOFs and advance the synthesis of multimetal MOFs in future research.


2012 ◽  
Vol 550-553 ◽  
pp. 2291-2295
Author(s):  
Hong Ying Xu ◽  
Chan Zhang

With anaerobic granular sludge as adsorbent, the adsorption kinetics and thermodynamics of methylene blue (MB) from aqueous solution was studied by batch adsorption technique.The pseudo-first order, pseudo- second order models and Langmuir, Freundlich isotherms models were used to describe the kinetic data.The experimental results show that the anaerobic granular sludge had strong and fast speed adsorption capacity for MB adsorption in wastewater. The adsorption equilibrium could be reached in 2h, and the maximum adsorption rate was 98.6%. the pseudo-second order equation is the best model that describes the adsorption behavior.The equilibrium data were fitted to Langmuir isotherms and the equilibrium adsorption was well described by the Langmuir isotherm model. The calculation values of thermodynamic parameters present that the adsorption is spontaneous and endothermic in nature.Our results suggest the anaerobic granular sludge is a potential MB cleaner in wastewater.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3209
Author(s):  
Aphiwe Siyasanga Gugushe ◽  
Anele Mpupa ◽  
Tshimangadzo Saddam Munonde ◽  
Luthando Nyaba ◽  
Philiswa Nosizo Nomngongo

In this study, Fe3O4-ZrO2 functionalized with 3-aminopropyltriethoxysilane (Fe3O4-ZrO2@APS) nanocomposite was investigated as a nanoadsorbent for the removal of Cd(II), Cu(II), Mn (II) and Ni(II) ions from aqueous solution and real samples in batch mode systems. The prepared magnetic nanomaterials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy/energy dispersion x-ray (SEM/EDX) Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Factors (such as adsorbent dose and sample pH) affecting the adsorption behavior of the removal process were studied using the response surface methodology. Under optimized condition, equilibrium data obtained were fitted into the Langmuir and Freundlich isotherms and the data fitted well with Langmuir isotherms. Langmuir adsorption capacities (mg/g) were found to be 113, 111, 128, and 123 mg/g for Cd, Cu, Ni and Mn, respectively. In addition, the adsorption kinetics was analyzed using five kinetic models, pseudo-first order, pseudo-second order, intraparticle diffusion and Boyd models. The adsorbent was successfully applied for removal of Cd(II), Cu(II), Mn (II) and Ni(II) ions in wastewater samples.


Sign in / Sign up

Export Citation Format

Share Document