scholarly journals Thermal conductivity analysis of a new sub-micron sized polystyrene foam

2020 ◽  
pp. 0021955X2094310
Author(s):  
FA Almeida ◽  
H Beyrichen ◽  
N Dodamani ◽  
R Caps ◽  
A Müller ◽  
...  

New polystyrene (PS) foams with submicron pore sizes and open pore structure are introduced as potential cores for vacuum insulation panels (VIPs). Measurements of the thermal conductivity λ of the air-filled and evacuated PS foams, the influence of temperature T, opacifiers as well as gas pressure p on the thermal conductivity λ are presented. First results of the foam microstructures, as visualized by electron microscopy, confirm that pore sizes below 1 µm can be achieved. Thermal conductivity values of advanced samples in vacuum of about 7 mW/(m·K) were measured.

2014 ◽  
Vol 2 (18) ◽  
pp. 6525-6531 ◽  
Author(s):  
G. Hayase ◽  
K. Kugimiya ◽  
M. Ogawa ◽  
Y. Kodera ◽  
K. Kanamori ◽  
...  

The relationship between the thermal conductivity, gas pressure and pore size of polymethylsilsesquioxane aerogels and xerogels has been investigated for practical applications.


Author(s):  
W.W. Adams ◽  
G. Price ◽  
A. Krause

It has been shown that there are numerous advantages in imaging both coated and uncoated polymers in scanning electron microscopy (SEM) at low voltages (LV) from 0.5 to 2.0 keV compared to imaging at conventional voltages of 10 to 20 keV. The disadvantages of LVSEM of degraded resolution and decreased beam current have been overcome with the new generation of field emission gun SEMs. In imaging metal coated polymers in LVSEM beam damage is reduced, contrast is improved, and charging from irregularly shaped features (which may be unevenly coated) is reduced or eliminated. Imaging uncoated polymers in LVSEM allows direct observation of the surface with little or no charging and with no alterations of surface features from the metal coating process required for higher voltage imaging. This is particularly important for high resolution (HR) studies of polymers where it is desired to image features 1 to 10 nm in size. Metal sputter coating techniques produce a 10 - 20 nm film that has its own texture which can obscure topographical features of the original polymer surface. In examining thin, uncoated insulating samples on a conducting substrate at low voltages the effect of sample-beam interactions on image formation and resolution will differ significantly from the effect at higher accelerating voltages. We discuss here sample-beam interactions in single crystals on conducting substrates at low voltages and also present the first results on HRSEM of single crystal morphologies which show some of these effects.


2020 ◽  
pp. 174425912098003
Author(s):  
Travis V Moore ◽  
Cynthia A. Cruickshank ◽  
Ian Beausoleil-Morrison ◽  
Michael Lacasse

The purpose of this paper is to investigate the potential for calculation methods to determine the thermal resistance of a wall system containing vacuum insulation panels (VIPs) that has been experimentally characterised using a guarded hot box (GHB) apparatus. The VIPs used in the wall assembly have not been characterised separately to the wall assembly, and therefore exact knowledge of the thermal performance of the VIP including edge effect is not known. The calculations and simulations are completed using methods found in literature as well as manufacturer published values for the VIPs to determine the potential for calculation and simulation methods to predict the thermal resistance of the wall assembly without the exact characterisation of the VIP edge effect. The results demonstrate that disregarding the effect of VIP thermal bridges results in overestimating the thermal resistance of the wall assembly in all calculation and simulation methods, ranging from overestimates of 21% to 58%. Accounting for the VIP thermal bridges using the manufacturer advertised effective thermal conductivity of the VIPs resulted in three methods predicting the thermal resistance of the wall assembly within the uncertainty of the GHB results: the isothermal planes method, modified zone method and the 3D simulation. Of these methods only the 3D simulation can be considered a potential valid method for energy code compliance, as the isothermal planes method requires too drastic an assumption to be valid and the modified zone method requires extrapolating the zone factor beyond values which have been validated. The results of this work demonstrate that 3D simulations do show potential for use in lieu of guarded hot box testing for predicting the thermal resistance of wall assemblies containing both VIPs and steel studs. However, knowledge of the VIP effective thermal conductivity is imperative to achieve reasonable results.


1982 ◽  
Vol 60 (7) ◽  
pp. 881-892 ◽  
Author(s):  
Russell G. Ross ◽  
Per Andersson

Solid phases in the tetrahydrofuran–water (THF–H2O) system were investigated in the temperature range 100–260 K and at pressures up to 1.5 GPa. Thermal conductivity, λ, and heat capacity per unit volume, ρcp, were measured, using the transient hot-wire method. We made measurements on solid phases having nominal compositions THF•17H2O, THF•7•1H2O, and THF•4•6H2O, which we refer to as phases α, β, and γ, respectively. Phase α is known to be a structure II clathrate hydrate, and λ for this phase was found to be similar to other crystalline solids which are glass-like in relation to their thermal properties. Low-energy excitations are known to be relevant to the properties of glass-like solids, and, in the case of phase α, were probably rotational vibrations of the THF guest molecules. Phase β was similar, and we inferred that it was probably a structure I clathrate hydrate. Phase γ behaved nearly like a normal crystal phase at low temperatures, but λ became almost independent of temperature near melting. At 1.1 GPa and 130 K, we found evidence that phase α transformed, on pressurization, to a metastable modification which may be a new high-density form of clathrate hydrate. The astrophysical implications of our results were mentioned briefly.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 3339-3351 ◽  
Author(s):  
Baowen Wang ◽  
Zhihui Li ◽  
Xinglai Qi ◽  
Nairong Chen ◽  
Qinzhi Zeng ◽  
...  

Wood fibers were prepared as core materials for a vacuum insulation panel (VIP) via a dry molding process. The morphology of the wood fibers and the microstructure, pore structure, transmittance, and thermal conductivity of the wood fiber VIP were tested. The results showed that the wood fibers had excellent thermal insulation properties and formed a porous structure by interweaving with one another. The optimum bulk density that led to a low-cost and highly thermally efficient wood fiber VIP was 180 kg/m3 to 200 kg/m3. The bulk density of the wood fiber VIP was 200 kg/m3, with a high porosity of 78%, a fine pore size of 112.8 μm, and a total pore volume of 7.0 cm3·g-1. The initial total thermal conductivity of the wood fiber VIP was 9.4 mW/(m·K) at 25 °C. The thermal conductivity of the VIP increased with increasing ambient temperature. These results were relatively good compared to the thermal insulation performance of current biomass VIPs, so the use of wood fiber as a VIP core material has broad application prospects.


Author(s):  
Adolfo Quiroz-Rodríguez ◽  
Cesia Guarneros-Aguilar ◽  
Ricardo Agustin-Serrano

In this research, it is presented a detailed study of the structural and thermoelectric properties of the pyrochlore zirconium Pr2Zr2O7 compound prepared by solid-state reaction (SSR) in air at ambient pressure. The synthesized sample was characterized using powder X-ray diffraction. The thermal stability of the thermoelectric compound (TE) Pr2Zr2O7 was tested by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Scanning electron microscopy shows that the crystal size varies between 0.69 and 2.81μm. Electrical conductivity (\sigma) of the sample calcined at 1400 °C presented values increase irregularly with the increasing temperature from 0.001 to 0.018 S cm-1 as expected in a semiconductor material. The thermal conductivity is lower than 0.44 - 775 W m-1 K-1 which is quite anomalous in comparison with the thermal conductivity of other oxides.


2015 ◽  
Vol 86 (12) ◽  
pp. 1628-1635 ◽  
Author(s):  
Stephan Hafenstein ◽  
Ewald Werner ◽  
Jens Wilzer ◽  
Werner Theisen ◽  
Sebastian Weber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document