scholarly journals Correlation of mechanical and electrical properties with processing variables in MWCNT reinforced thermoplastic nanocomposites

2018 ◽  
Vol 52 (26) ◽  
pp. 3681-3697 ◽  
Author(s):  
Saeed Doagou-Rad ◽  
Aminul Islam ◽  
Jakob Søndergaard Jensen

The influence of the processing variables and nanotube content on the mechanical and electrical properties of polyamide 6,6-based nanocomposites reinforced with multi-walled carbon nanotubes is investigated. Results show that variation in the processing variables such as compounding method, injection melt temperature, injection speed, mold temperature, and holding pressure varies the properties significantly. In fact, composites containing similar contents of the nanofillers show variations in mechanical properties up to 30.0% and in the electrical properties up to three orders of magnitude. Different processing parameters required for achieving optimal mechanical and electrical performances are also found. Correlation between processing parameters and microstructure within the nanocomposites is studied. Results show that variation of the processing parameters defines the existence or absence of a nanotube network in the nanocomposite structure. Experimental and micromechanical modeling results show that less control over the nanocomposite morphology and nanotube alignment is achievable in higher nanofiller contents. The underlying mechanisms responsible for the modulation in the properties are also discussed using scanning and transmission electron microscopy, rheological and crystallization investigations. The research provides a recipe to manufacture the tailored nanocomposite with the specified properties for various industrial applications.

2012 ◽  
Vol 501 ◽  
pp. 117-121
Author(s):  
Gang Gou ◽  
Peng Cheng Xie ◽  
Wei Min Yang ◽  
Yu Mei Ding

The ability for polymer melt to flow into the microstructure is a crucial factor for successful molding in the microinjection molding of plastic parts. In this study, a simplified analytical model with a direct hot runner nozzle and was constructed to estimate the filling percentage of mold’s cavity. The filling behavior of polymer melt was observed by 3D simulation software Moldflow. The effects of the mold temperature, melt temperature, injection pressure, injection rate, and packing pressure on the filling behavior of polymer melt were investigated. Results revealed that the filling percentage increased with respect to the increase of mold temperature and melt temperature which didn’t exceed its degradation temperature. The injection pressure and packing pressure dramatically influence the filling percentage, and it made no sense to lift the injection speed to fill the cavity when the injection speed reached the relatively high values, and only processing parameter combined available could guarantee the perfect flow and filling for the microstructure.


Author(s):  
Cahyo Budiantoro ◽  
Adi Nugroho

The quality of injection moulded parts can be influenced by processing parameters. The effect of mould temperature and melt temperature on the weight and shrinkage of Styrene Acrylonitrile moulded part was observed in this research. It was found that by increasing mold temperatures at constant melt temperature and injection speed, the weight of the part decreased and the shrinkage value slightly decreased. On the other hand, by increasing melt temperature at constant mold temperature and injection speed, the part weight increased. Both mold temperature and melt temperature gave only a small effect because the temperature difference was not too large.


2020 ◽  
Vol 62 (5) ◽  
pp. 535-543
Author(s):  
Mirigul Altan ◽  
Bora Sener ◽  
Mirigul Altan

Abstract Plastic injection forming (PIF) is an alternative sheet metal forming method for complex geometrical parts with dimensions in low tolerance. This method is a combination of injection molding and hydroforming in which a molten polymer material has been injected over a sheet metal via a plastic injection molding machine. In this study, aluminum sheets 1.5 mm thick were shaped by PIF at various injection pressures, melt temperatures and injection speed. The effects of these parameters on the formability of the sheet metal were investigated using the experimental design technique. The thinning rate, flange radius and the hardness values of the shaped sheets were considered in the experimental study. Injection pressure was found to be the most effective parameter and melt temperature was the second degree effective parameter for the thinning rate. The usability of the PIF process in industrial applications as an alternative method was emphasized by comparing PIF with conventional hydroforming by means of the finite element method (Ls-Dyna). A 2.07 % deviation was observed between the FE results for hydroforming and the experimental results for PIF.


2012 ◽  
Vol 253-255 ◽  
pp. 2223-2226 ◽  
Author(s):  
Yi Cheng Chen ◽  
Yen Chao Wang ◽  
Shi Chang Tseng

This research focuses on the effect manufacture factors about the brightness and uniformity of multi-stage reflector. Trace-pro and 3D CAD model were used for optical simulations. The optical simulation results of grating lens and reflector were done as well as successfully developed the LED fog lamp. The results meet the regulations, R19 CLASS F3, of Economic Commission for Europe (ECE) at the test distance of 25 meters, and central zone under line6 achieves average over 3200cd. The optimal design of reflector is of third-order paraboloidal one to improve the brightness and uniformity. The acuter the microstructure’s tip is(R below 0.1mm), the better the apparent improving of eliminating stray light. In accordance with microstructure of grating lens, Moldex-3D is used to help the mold flow filling simulation and mold design. The mold cavity with microstructure was manufactured by the wire cutting and polishing processing. And the molding plastic was optics level PC (Polycarbonate). Both Taguchi’s method applied in Moldex-3D and real injection molding experiments showed that high melt temperature, low injection speed and suitable holding time can reduce warpage; in addition, using higher melt temperature, mold temperature and injection pressure can achieve higher degree of replication of micro features.


2013 ◽  
Vol 561 ◽  
pp. 239-243 ◽  
Author(s):  
Yong Nie ◽  
Hui Min Zhang ◽  
Jia Teng Niu

This article is using Moldflow analysis and orthogonal experimental method during the whole experiment. The injection molding process of motor cover is simulated under various technological conditions.After forming the maximum amount of warpage of plastic parts for evaluation.According to the range analysis of the comprehensive goal, the extent of the overall influence to the processing parameters, such as gate location, melt temperature, mold temperature and holding pressure is clarified.Through analyzing the diagrams of influential factors resulted from the simulation result,the optimized process parameter scheme is obtained and further verified by simulation.


2013 ◽  
Vol 347-350 ◽  
pp. 1163-1167
Author(s):  
Ling Bai ◽  
Hai Ying Zhang ◽  
Wen Liu

Moldflow software was used to obtain the best gate location and count. Influence of injection molding processing parameters on sink marks of injection-piece was studied based on orthogonal test. The effects of different process parameters were analyzed and better process parameters were obtained. Results of research show that decreasing melt temperature, mold temperature, the increasing injection time and packing pressure can effectively reduce the sink marks index.


2011 ◽  
Vol 179-180 ◽  
pp. 1193-1198 ◽  
Author(s):  
Tang Qing Kuang

Water assisted injection molding is a pretty novel way to fabricate hollow or more complicated parts. Its molding window and process control are more critical and difficult since additional processing parameters are involved. A simulation model for the filling stage of a pipe cavity during short-shot water assisted injection molding was proposed. The finite element/finite difference/control volume methods were adopted for the numerical simulation. A numerical study, based on the single factor method, was conducted to characterize the effect of different processing parameters on the short shot water-assisted injection-molding of thermoplastic composites, including short-shot size, melt temperature, mold temperature, water temperature and water pressure. For the factors selected in the simulations, short-shot size was found to be the principal parameters affecting the water penetration length while melt temperature, mold temperature, water temperature, water pressure were found to have little effect on the penetration of water.


2011 ◽  
Vol 189-193 ◽  
pp. 537-540
Author(s):  
Jia Min Zhang ◽  
Ming Yi Zhu ◽  
Zhao Xun Lian ◽  
Rong Zhu

The use of L27 (35) orthogonal to the battery shell injection molding process is optimized. The main factors of technical parameters were determined mould temperature, melt temperature, the speed of injection, injection pressure, cooling time.On the basis of actual production, to determine the factors values of different process parameters.Combination of scrapped products in key (reduction and a high degree of tolerance deflated) tests were selected in the process parameters within the scope of the assessment. Various factors impact on the product of the total height followed by cooling time, mold temperature, melt temperature, injection pressure, injection speed from strong to weak .The best products technological parameters were determined.Good results were obtained for production.


2010 ◽  
Vol 37-38 ◽  
pp. 570-575 ◽  
Author(s):  
Bao Shou Sun ◽  
Zhe Chen ◽  
Bo Qin Gu ◽  
Xiao Diao Huang

To optimize injection molding warpage, this paper applies the uniform design of experiment method to search for the optimal injection molding processing parameters. The warpage. simulation analysis is accomplished by emplying Moldflow software. The melt temperature, mold temperature, injection time and packing pressure are regarded as processing parameters, and processing parameters are optimized through establishing a regression equation, and the optimization result and influence factors are analyzed. The results show that uniform design of experiment can reduce number of experiments used effectively and the quality of the product is greatly improved by the optimization method.


Sign in / Sign up

Export Citation Format

Share Document