Effect of surface activation of alumina particles on the performances of thermosetting-based composite materials

2019 ◽  
Vol 53 (19) ◽  
pp. 2727-2742 ◽  
Author(s):  
Abdusalam Drah ◽  
Tihomir Kovačević ◽  
Jelena Rusmirović ◽  
Nataša Tomić ◽  
Saša Brzić ◽  
...  

Two types of alumina particles, commercial (c-Al2O3) and iron doped (Fe-Al2O3), were functionalized with 3-(aminopropyl)trimethoxysilane (one-step) and two-step consecutive process, i.e. firstly using 3-(aminopropyl)trimethoxysilane followed by methyl ester of linseed oil (biodiesel) to produce Al2O3ATPMS-BD reinforcement, respectively. The effect of modifier type and variable amount of alumina particles on the dynamical and mechanical properties of unsaturated polyester resin–based composites was studied. The highest improvement of the tensile strength and micro Vickers hardness, 78.1 and 163%, respectively, was obtained at 1.0 wt% of Fe-Al2O3APTMS-BD addition. The obtained multifunctional composites can be potentially applied in construction and mining industries.

2021 ◽  
pp. 51305
Author(s):  
Nora Abigail Wilson García ◽  
Jorge Luis Almaral Sánchez ◽  
Ramón Álvaro Vargas Ortiz ◽  
Abel Hurtado Macías ◽  
Nelly Flores Ramírez ◽  
...  

2021 ◽  
Author(s):  
Aliyu Yaro ◽  
Laminu Kuburi ◽  
Musa Abiodun Moshood

Abstract Polymeric materials are used in different industrial applications because they retain good environmental properties, low-cost, and easy to produce compared to conventional materials. This study investigated the effect of adding kaolin micro-filler (KF) on the mechanical properties of Luffa Fiber (LCF) reinforced polyester resin. Luffa cylindrica fiber treated with 5% NaOH, varied in weight fraction (5, 10, and 15%wt) was used to reinforce unsaturated polyester resin using hand lay-up method, whereas for the hybrid composite kaolin filler were kept constant at 6wt% fraction while the fibers varied as in the mono-reinforced composite. The samples were machined for mechanical and microstructural analysis. Analysis of the result revealed that the addition of kaolin has enhanced greatly the mechanical properties of Luffa-fibre based composites. The result reveal of the microstructure analysis, shows that there is an improvement in fiber-matrix adhesion.


2011 ◽  
Vol 8 (2) ◽  
pp. 551-560
Author(s):  
Baghdad Science Journal

In this study, composite materials were prepared using unsaturated polyester resin as binder with two types of fillers (sawdust and chopped reeds). The molding method is used to prepare sheets of UPE / sawdust composite and UPE / chopped reeds composite. The mechanical properties were studied including flexural strength and Young's modulus for the samples at normal conditions (N.C). The Commercial wood, UPE and its composite samples were immersed in water for about 30 days to find the weight gain (Mt%) of water for the samples, also to find the effect of water on their flexural strength and Young's modulus. The results showed that the samples of UPE / chopped reeds composite gained highest values of flexural strength (24.5 MPa) and Young's modulus (5.1 GPa) as compared with other composites at (N.C). The results showed that the wet samples of sawdust composite have lowest values of weight gain (Mt %) of water (0.043%) as compared with other composites after immersion. Also it’s showed a slight decrease in values of Young's modulus for all the samples after immersion as compared with the samples at (N.C). Finally it’s showed a slight decrease in values of flexural strength for all the samples except for the composite material formed from UPE / chopped reeds which showed an increase in the value of flexural strength after immersion, where the wet samples of UPE / chopped reeds composite gained (29 MPa) as compared with the samples at (N.C).


2019 ◽  
Vol 24 ◽  
pp. 1-7
Author(s):  
Md. Naimul Islam ◽  
Harun Ar-Rashid ◽  
Farhana Islam ◽  
Nanda Karmaker ◽  
Farjana A. Koly ◽  
...  

E-glass fiber mat reinforced Unsaturated Polyester Resin (UPR)-based composites were fabricated by conventional hand lay-up technique. The fiber content was varied from 5 to 50% by weight. Mechanical properties (tensile and bending) of the fabricated composites were investigated. The tensile strength (TS) of the 5% and 50% fiber reinforced composites was 32 MPa and 72 MPa, respectively. Similarly, tensile modulus, bending strength and bending modulus of the composites were increased by the increase of fiber loading. Interfacial properties of the composites were investigated by scanning electron microscopy (SEM) and the results revealed that the interfacial bond between fiber and matrix was excellent. Keywords: Unsaturated Polyester Resin, Mechanical Properties, E-glass Fibers, Composites, Polymer.


2020 ◽  
Vol 29 ◽  
pp. 2633366X2093589
Author(s):  
Van-Tho Hoang ◽  
Thanh-Nhut Pham ◽  
Young-Jin Yum

Coir is a well-known natural fiber extracted from the husk of a coconut tree. In polymer composite materials, the ultimate performance of coir has been shown using surface modification methods. Among them, sodium hydroxide (NaOH) is a comparative and efficient solution used for surface treatment of lignocellulosic fiber. In contrast to coir, coconut timber, a hardwood that dominates the weight of the coconut tree, has not been appropriately considered for use in polymer composites. Therefore, in this article, coconut trunk particle/unsaturated polyester resin composites were experimentally investigated. As a pioneering study, a large range of NaOH concentrations from 2 wt% to 10 wt% (with an interval of 2 wt%) was utilized to treat the surface of the filler. Finally, 4 wt% alkali solution was found as the best content for surface modification based on the mechanical properties of the composite, including those determined by tensile, flexural, and impact test results.


Sign in / Sign up

Export Citation Format

Share Document