Effects of nano reinforcing/matrix interaction on chemical, thermal and mechanical properties of epoxy nanocomposites

2021 ◽  
pp. 002199832110370
Author(s):  
Şakir Yazman ◽  
Mesut Uyaner ◽  
Fazliye Karabörk ◽  
Ahmet Akdemir

This article investigates the impact of addition various types of nanoparticles with different structural, dimensional, and morphological properties on the interphase region formed between the particle/matrix and the curing behavior of the epoxy affect the nanocomposite material properties. For this purpose, epoxy nanocomposites (NCs) were produced by adding multi-walled carbon nanotube (MWCNT) and alumina (Al2O3) nanoparticles (NPs) into the epoxy matrix at different rates (0.5–2.0 wt.%). The effects of the particle/matrix interaction on the properties of the composite have been revealed by chemical, thermal, mechanical analyzes and microstructure investigations. An increase in the absorption density, which reveals the physical interaction of nanoparticles with the epoxy matrix, was observed in Fourier-transform infrared spectroscopy. Absorption vibration peak intensities in nanocomposite samples were at most 1.0 wt.% Al2O3 and 1.25 wt.% CNT added nanocomposites. It was observed that the Tg value increased depending on the number of nanoparticles. The addition of Al2O3 increased Tg values more than CNT. Besides, the mechanical properties of NCs were determined by tensile tests. The highest increase in mechanical properties was achieved by adding 1.25 wt.% CNT and 1.0 wt.% Al2O3, respectively. Mechanical properties tended to decrease at higher addition rates. The shape, size, amount, and distribution of nanoparticles added into the epoxy matrix directly affected the NCs' properties. It has been determined that homogeneously dispersed spherical Al2O3 nanoparticles are more effective than fiber-shaped CNTs in the properties of NCs.

2020 ◽  
Vol 49 (5) ◽  
pp. 347-353
Author(s):  
Haosheng Wang ◽  
Zewen Li

Purpose This paper aims to feature preparation and characterization of thiokol oligomer functionalized MWCNTs/epoxy nanocomposites using low molecular weight polyamide as curing agent. Design/methodology/approach First, thiokol oligomer functionalized MWCNTs (MWCNTs-TO) were prepared through hydroxylation, silanization and graft modification of MWCNTs. The nanocomposite specimens were fabricated through sonication and cast moulding process. The authors then investigated the impact of MWCNTs-TO content on mechanical and thermal properties of the nanocomposites. Findings MWCNTs-TO with grafting ratio of 17.5 Wt.% was synthesized and characterized with X-ray photoelectron spectroscopy, thermal gravimetric analysis, Fourier transform infrared and scanning electron microscopy. The obtained epoxy nanocomposites exhibit improved mechanical properties and thermal stability with MWCNTs-TO added. Moreover, desirable results were obtained at 0.75 Wt.% of MWCNTs-TO loading: the young’s modulus, tensile, flexural and impact strength increased by 24.6,72.8,34.8 and 82.7%, respectively, compared to the neat epoxy. The improvement of mechanical properties is mainly attributed to enhanced interfacial interaction and dispersion between the covalent functionalized MWCNTs and epoxy matrix. Research limitations/implications A flexible thiokol oligomer was successfully grafted onto MWCNTs via a mild route. Nanocomposites with excellent interfacial interaction and dispersion between MWCNTs-TO and the epoxy matrix have been successfully fabricated and investigated. Practical implications This method provided a mild and practical approach to improve the performance of MWCNTs epoxy nanocomposites. Originality/value A flexible thiokol oligomer was successfully covalent grafted onto MWCNTs via a mild route. Nanocomposites with excellent interfacial interaction and dispersion between MWCNTs-TO and the epoxy matrix have been successfully fabricated and investigated.


2016 ◽  
Vol 29 (2) ◽  
pp. 151-160 ◽  
Author(s):  
Yeping Wu ◽  
Zhongyun Gu ◽  
Maobin Chen ◽  
Chunhua Zhu ◽  
Hong Liao

In order to obtain epoxy compounds with excellent mechanical properties without compromising other desired properties, pristine- or carboxyl-functionalized multi-walled carbon nanotube (p-MWCNT or f-MWCNT) along with polysulfide were incorporated into an amine-cured epoxy resin. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses proved the existence of carboxyl groups on the surface of f-MWCNT. Adding 0.1 wt% f-MWCNT significantly improved the tensile strength and impact strength of the epoxy nanocomposites by 104% and 47%, respectively. However, adding p-MWCNT had little effect on the mechanical properties of the nanocomposites. The glass transition temperature of the f-MWCNT/epoxy nanocomposites were also much higher than neat epoxy matrix and p-MWCNT/epoxy nanocomposites. The fracture surface morphology and dynamic mechanical analysis results indicated that the interfacial interactions between f-MWCNT and the epoxy matrix were much stronger than that of p-MWCNT, which ensured the much-improved mechanical properties.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1094
Author(s):  
M. A. Lakhdari ◽  
F. Krajcarz ◽  
J. D. Mithieux ◽  
H. P. Van Landeghem ◽  
M. Veron

The impact of microstructure evolution on mechanical properties in superduplex stainless steel UNS S32750 (EN 1.4410) was investigated. To this end, different thermomechanical treatments were carried out in order to obtain clearly distinct duplex microstructures. Optical microscopy and scanning electron microscopy, together with texture measurements, were used to characterize the morphology and the preferred orientations of ferrite and austenite in all microstructures. Additionally, the mechanical properties were assessed by tensile tests with digital image correlation. Phase morphology was not found to significantly affect the mechanical properties and neither were phase volume fractions within 13% of the 50/50 ratio. Austenite texture was the same combined Goss/Brass texture regardless of thermomechanical processing, while ferrite texture was mainly described by α-fiber orientations. Ferrite texture and average phase spacing were found to have a notable effect on mechanical properties. One of the original microstructures of superduplex stainless steel obtained here shows a strength improvement by the order of 120 MPa over the industrial material.


2021 ◽  
Vol 13 (10) ◽  
pp. 5494
Author(s):  
Lucie Kucíková ◽  
Michal Šejnoha ◽  
Tomáš Janda ◽  
Jan Sýkora ◽  
Pavel Padevět ◽  
...  

Heating wood to high temperature changes either temporarily or permanently its physical properties. This issue is addressed in the present contribution by examining the effect of high temperature on residual mechanical properties of spruce wood, grounding on the results of full-scale fire tests performed on GLT beams. Given these tests, a computational model was developed to provide through-thickness temperature profiles allowing for the estimation of a charring depth on the one hand and on the other hand assigning a particular temperature to each specimen used subsequently in small-scale tensile tests. The measured Young’s moduli and tensile strengths were accompanied by the results from three-point bending test carried out on two groups of beams exposed to fire of a variable duration and differing in the width of the cross-section, b=100 mm (Group 1) and b=160 mm (Group 2). As expected, increasing the fire duration and reducing the initial beam cross-section reduces the residual bending strength. A negative impact of high temperature on residual strength has also been observed from simple tensile tests, although limited to a very narrow layer adjacent to the charring front not even exceeding a typically adopted value of the zero-strength layer d0=7 mm. On the contrary, the impact on stiffness is relatively mild supporting the thermal recovery property of wood.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1242
Author(s):  
Olga Mysiukiewicz ◽  
Paulina Kosmela ◽  
Mateusz Barczewski ◽  
Aleksander Hejna

Investigations related to polymer/metal composites are often limited to the analysis of the electrical and thermal conductivity of the materials. The presented study aims to analyze the impact of aluminum (Al) filler content (from 1 to 20 wt%) on the rarely investigated properties of composites based on the high-density polyethylene (HDPE) matrix. The crystalline structure, rheological (melt flow index and oscillatory rheometry), thermal (differential scanning calorimetry), as well as static (tensile tests, hardness, rebound resilience) and dynamic (dynamical mechanical analysis) mechanical properties of composites were investigated. The incorporation of 1 and 2 wt% of aluminum filler resulted in small enhancements of mechanical properties, while loadings of 5 and 10 wt% provided materials with a similar performance to neat HDPE. Such results were supported by the lack of disturbances in the rheological behavior of composites. The presented results indicate that a significant content of aluminum filler may be introduced into the HDPE matrix without additional pre-treatment and does not cause the deterioration of composites’ performance, which should be considered beneficial when engineering PE/metal composites.


2013 ◽  
Vol 844 ◽  
pp. 53-56
Author(s):  
Saravalee Saengthaveep ◽  
Sadhan C. Jana ◽  
Rathanawan Magaraphan

To produce a tough material for application demanding high impact resistance and low moisture absorption, melt blending of Nylon12 (Polyamide 12, PA12) and natural rubber (NR) was carried out in a brabender plasticorder at 210 °C with rotor speed of 70 rpm in the presence of polystyrene/maleated natural rubber (PS/MNR) blend as a compatibilizer. The effect of compatibilizer content (1, 3, 5, 7 and 10 phr) on phase morphology, thermal, and mechanical properties of [Nylon12/NR]/[PS/MNR] blends was investigated by using SEM, DSC, and Izod impact tester, respectively. The result revealed that PS/MNR blend improved the compatibility of Nylon12/NR blends efficiently due to the presence of amide linkage at the interfaces from the reaction between the reactive groups of MNR and the NH2 end groups of Nylon12 during mixing. A fine phase morphology (good dispersion and small dispersed phase size of NR domains in Nylon12 matrix) of [Nylon12/NR]/[PS/MNR] blends was observed at the optimum compatibilizer content of 7 phr, relating to the improvement of mechanical property. The impact energy of [Nylon12/NR]/[PS/MNR] blends was 503 J/m higher than that of neat Nylon12 (115 J/m) and Nylon12/NR binary blend (241 J/m) due to the toughening effect of rubber and proper morphology. The melting temperature of all blends did not change obviously from thermal analysis. However, the presence of rubber particle obstructed the crystallization of Nylon12 phase, leading to the decreasing of %crystallinity from 93% to around 70%.


2019 ◽  
Vol 36 (1) ◽  
pp. 47-62
Author(s):  
AR Mohammed ◽  
MS Nurul Atiqah ◽  
Deepu A Gopakumar ◽  
MR Fazita ◽  
Samsul Rizal ◽  
...  

Natural fiber-reinforced composites gained considerable interest in the scientific community due to their eco-friendly nature, cost-effective, and excellent mechanical properties. Here, we reported a chemical modification of kenaf fiber using propionic anhydride to enhance the compatibility with the epoxy matrix. The incorporation of the modified woven and nonwoven kenaf fibers into the epoxy matrix resulted in the improvement of the thermal and mechanical properties of the composite. The thermal stability of the epoxy composites was enhanced from 403°C to 677°C by incorporating modified woven kenaf fibers into the epoxy matrix. The modified and unmodified woven kenaf fiber-reinforced epoxy composites had a tensile strength of 64.11 and 58.82 MPa, respectively. The modified woven composites had highest flexural strength, which was 89.4 MPa, whereas, for unmodified composites, it was 86.8 MPa. The modified woven fiber-reinforced epoxy composites showed the highest value of flexural modulus, which was 6.0 GPa compared to unmodified woven composites (5.51 GPa). The impact strength of the epoxy composites was enhanced to 9.43 kJ m−2 by the incarnation of modified woven kenaf fibers into epoxy matrix. This study will be an effective platform to design the chemical modification strategy on natural fibers for enhancing the compatibility toward the hydrophobic polymer matrices.


2009 ◽  
Vol 79-82 ◽  
pp. 553-556 ◽  
Author(s):  
Ling Fei Shi ◽  
Gang Li ◽  
Gang Sui ◽  
Xiao Ping Yang

The increasing proliferation and application of advanced polymer composites requires higher and broader performance resin matrices. Poly(oxypropylene) with –NH2 end-groups has been widely used to toughen epoxy resins, but the strength of resin matrix may be reduced due to the addition of flexible segments in the crosslinking network. Carbon nanotubes (CNTs) have been paid more and more attention in recent years because of their superior thermal and mechanical properties. In this paper, CNTs grafted with Jeffamines T403 were used to simultaneously improve the reinforcement and toughening of an epoxy resin. The untreated multi-walled carbon nanotubes (u-MWNTs) were functionalized with amine groups according to three steps: carboxylation, acylation, and amidation. The f-MWNTs were characterized by Fourier transform infra-red (FTIR) and X-ray photoelectron spectroscopy (XPS). The experimental results indicated that the T403 was grafted to the surface of MWCNTs. The mechanical and thermal properties of epoxy with f-MWNTs were investigated. The tensile and flexural strength increased by 7.77 % and 7.03 % after adding 0.5wt% f-MWCNTs without sacrificing the impact toughness. At the same time, dynamic mechanical thermal analysis (DMTA) showed that the glass transition temperature (Tg) of epoxy with f-MWNTs were increased. The fracture surface of epoxy with f-MWNTs was observed by scanning electron microscopy (SEM) to understand the dispersion of f-MWNTs in epoxy matrix and interfacial adhesion between f-MWNTs and epoxy matrix, which can be attributed to the strong interfacial bonding between f-MWNTs and epoxy resin.


Sign in / Sign up

Export Citation Format

Share Document