Short Term Memory and Syntactic Structure in Educationally Subnormal Children

1968 ◽  
Vol 11 (4) ◽  
pp. 209-219 ◽  
Author(s):  
Norman C. Graham
2018 ◽  
Author(s):  
Peter Harrison ◽  
Marcus Thomas Pearce

Two approaches exist for explaining harmonic expectation. The sensory approach claims that harmonic expectation is a low-level process driven by sensory responses to acoustic properties of musical sounds. Conversely, the cognitive approach describes harmonic expectation as a high-level cognitive process driven by the recognition of syntactic structure learned through experience. Many previous studies have sought to distinguish these two hypotheses, largely yielding support for the cognitive hypothesis. However, subsequent re-analysis has shown that most of these results can parsimoniously be explained by a computational model from the sensory tradition, namely Leman’s (2000) model of auditory short- term memory (Bigand, Delbé, Poulin-Charronnat, Leman, & Tillmann, 2014). In this research we re-examine the explanatory power of auditory short-term memory models, and compare them to a new model in the Information Dynamics Of Music (IDyOM) tradition, which simulates a cognitive theory of harmony perception based on statistical learning and probabilistic prediction. We test the ability of these models to predict the surprisingness of chords within chord sequences (N = 300), as reported by a sample group of university undergraduates (N = 50). In contrast to previous studies, which typically use artificial stimuli composed in a classical idiom, we use naturalistic chord sequences sampled from a large dataset of popular music. Our results show that the auditory short-term memory models have remarkably low explanatory power in this context. In contrast, the new statistical learning model predicts surprisingness ratings relatively effectively. We conclude that auditory short-term memory is insufficient to explain harmonic expectation, and that cognitive processes of statistical learning and probabilistic prediction provide a viable alternative.


Author(s):  
Dalila Bouras ◽  
Mohamed Amroune ◽  
Hakim Bendjenna ◽  
Issam Bendib

Objective: One key task of fine-grained opinion mining on product review is to extract product aspects and their corresponding opinion expressed by users. Previous work has demonstrated that precise modeling of opinion targets within the surrounding context can improve performances. However, how to effectively and efficiently learn hidden word semantics and better represent targets and the context still needs to be further studied. Recent years have seen a revival of the long short-term memory (LSTM), with its effectiveness being demonstrated on a wide range of problems. However, LSTM based approaches are still limited to linear data processing since it processes the information sequentially. As a result, they may perform poorly on user-generated texts, such as product reviews, tweets, etc., whose syntactic structure is not precise.To tackle this challenge, <P> Methods: In this research paper, we propose a constituency tree long short term memory neural network-based approach. We compare our model with state-of-the-art baselines on SemEval 2014 datasets. <P> Results: Experiment results show that our models obtain competitive performances compared to various supervised LSTM architectures. <P> Conclusion: Our work contributes to the improvement of state-of-the-art aspect-level opinion mining methods and offers a new approach to support human decision-making process based on opinion mining results.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


2020 ◽  
Vol 63 (12) ◽  
pp. 4162-4178
Author(s):  
Emily Jackson ◽  
Suze Leitão ◽  
Mary Claessen ◽  
Mark Boyes

Purpose Previous research into the working, declarative, and procedural memory systems in children with developmental language disorder (DLD) has yielded inconsistent results. The purpose of this research was to profile these memory systems in children with DLD and their typically developing peers. Method One hundred four 5- to 8-year-old children participated in the study. Fifty had DLD, and 54 were typically developing. Aspects of the working memory system (verbal short-term memory, verbal working memory, and visual–spatial short-term memory) were assessed using a nonword repetition test and subtests from the Working Memory Test Battery for Children. Verbal and visual–spatial declarative memory were measured using the Children's Memory Scale, and an audiovisual serial reaction time task was used to evaluate procedural memory. Results The children with DLD demonstrated significant impairments in verbal short-term and working memory, visual–spatial short-term memory, verbal declarative memory, and procedural memory. However, verbal declarative memory and procedural memory were no longer impaired after controlling for working memory and nonverbal IQ. Declarative memory for visual–spatial information was unimpaired. Conclusions These findings indicate that children with DLD have deficits in the working memory system. While verbal declarative memory and procedural memory also appear to be impaired, these deficits could largely be accounted for by working memory skills. The results have implications for our understanding of the cognitive processes underlying language impairment in the DLD population; however, further investigation of the relationships between the memory systems is required using tasks that measure learning over long-term intervals. Supplemental Material https://doi.org/10.23641/asha.13250180


2020 ◽  
Vol 29 (4) ◽  
pp. 710-727
Author(s):  
Beula M. Magimairaj ◽  
Naveen K. Nagaraj ◽  
Alexander V. Sergeev ◽  
Natalie J. Benafield

Objectives School-age children with and without parent-reported listening difficulties (LiD) were compared on auditory processing, language, memory, and attention abilities. The objective was to extend what is known so far in the literature about children with LiD by using multiple measures and selective novel measures across the above areas. Design Twenty-six children who were reported by their parents as having LiD and 26 age-matched typically developing children completed clinical tests of auditory processing and multiple measures of language, attention, and memory. All children had normal-range pure-tone hearing thresholds bilaterally. Group differences were examined. Results In addition to significantly poorer speech-perception-in-noise scores, children with LiD had reduced speed and accuracy of word retrieval from long-term memory, poorer short-term memory, sentence recall, and inferencing ability. Statistically significant group differences were of moderate effect size; however, standard test scores of children with LiD were not clinically poor. No statistically significant group differences were observed in attention, working memory capacity, vocabulary, and nonverbal IQ. Conclusions Mild signal-to-noise ratio loss, as reflected by the group mean of children with LiD, supported the children's functional listening problems. In addition, children's relative weakness in select areas of language performance, short-term memory, and long-term memory lexical retrieval speed and accuracy added to previous research on evidence-based areas that need to be evaluated in children with LiD who almost always have heterogenous profiles. Importantly, the functional difficulties faced by children with LiD in relation to their test results indicated, to some extent, that commonly used assessments may not be adequately capturing the children's listening challenges. Supplemental Material https://doi.org/10.23641/asha.12808607


2019 ◽  
Vol 28 (3) ◽  
pp. 1039-1052
Author(s):  
Reva M. Zimmerman ◽  
JoAnn P. Silkes ◽  
Diane L. Kendall ◽  
Irene Minkina

Purpose A significant relationship between verbal short-term memory (STM) and language performance in people with aphasia has been found across studies. However, very few studies have examined the predictive value of verbal STM in treatment outcomes. This study aims to determine if verbal STM can be used as a predictor of treatment success. Method Retrospective data from 25 people with aphasia in a larger randomized controlled trial of phonomotor treatment were analyzed. Digit and word spans from immediately pretreatment were run in multiple linear regression models to determine whether they predict magnitude of change from pre- to posttreatment and follow-up naming accuracy. Pretreatment, immediately posttreatment, and 3 months posttreatment digit and word span scores were compared to determine if they changed following a novel treatment approach. Results Verbal STM, as measured by digit and word spans, did not predict magnitude of change in naming accuracy from pre- to posttreatment nor from pretreatment to 3 months posttreatment. Furthermore, digit and word spans did not change from pre- to posttreatment or from pretreatment to 3 months posttreatment in the overall analysis. A post hoc analysis revealed that only the less impaired group showed significant changes in word span scores from pretreatment to 3 months posttreatment. Discussion The results suggest that digit and word spans do not predict treatment gains. In a less severe subsample of participants, digit and word span scores can change following phonomotor treatment; however, the overall results suggest that span scores may not change significantly. The implications of these findings are discussed within the broader purview of theoretical and empirical associations between aphasic language and verbal STM processing.


2004 ◽  
Vol 15 (2) ◽  
pp. 81-90 ◽  
Author(s):  
Thomas Merten ◽  
Matthias Henry ◽  
Robin Hilsabeck

Zusammenfassung: In der neuropsychologischen Diagnostik, mehr noch aber in der Begutachtung gewinnen Symptomvalidierungstests (SVT) zur Untersuchung der Leistungsmotivation zunehmend an Bedeutung. In einer Analogstudie wurde die Güte zweier international bekannter Verfahren (Word Memory Test; Amsterdam Short Term Memory Test) sowie einer Neuentwicklung (Word Completion Memory Test) untersucht. Zusätzlich wurden Leistungstests eingesetzt: der Trail Making Test (TMT), der Complex Figure Test sowie die Standard Progressive Matrices (SPM). Eine Gruppe von 10 experimentellen Simulanten wurde spezifisch auf die Vortäuschung von Gedächtnisstörungen vorbereitet, während eine Kontrollgruppe (n = 10) optimale Testanstrengung zeigen sollte. Alle SVT führten im Gegensatz zu den Simulationsmarkern des TMT und der SPM zu einer ausgezeichneten Klassifikationsgüte (95-100 %). Die neuropsychologischen Leistungsmaße wiesen zwar signifikante Gruppenunterschiede aus, zeigten aber auch eine nicht unbedeutende Überlappung der Verteilungen. Mehr Studien sind notwendig, um den SVT in den deutschsprachigen Ländern den Platz zu sichern, den sie international aktuell in der klinisch-neuropsychologischen Forschung und Praxis einnehmen.


Author(s):  
Kevin Dent

In two experiments participants retained a single color or a set of four spatial locations in memory. During a 5 s retention interval participants viewed either flickering dynamic visual noise or a static matrix pattern. In Experiment 1 memory was assessed using a recognition procedure, in which participants indicated if a particular test stimulus matched the memorized stimulus or not. In Experiment 2 participants attempted to either reproduce the locations or they picked the color from a whole range of possibilities. Both experiments revealed effects of dynamic visual noise (DVN) on memory for colors but not for locations. The implications of the results for theories of working memory and the methodological prospects for DVN as an experimental tool are discussed.


Author(s):  
Roberto Limongi ◽  
Angélica M. Silva

Abstract. The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production – where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.


Sign in / Sign up

Export Citation Format

Share Document