Improving Fine-Grained Opinion Mining Approach with a Deep Constituency Tree-Long Short Term Memory Network and Word Embedding

Author(s):  
Dalila Bouras ◽  
Mohamed Amroune ◽  
Hakim Bendjenna ◽  
Issam Bendib

Objective: One key task of fine-grained opinion mining on product review is to extract product aspects and their corresponding opinion expressed by users. Previous work has demonstrated that precise modeling of opinion targets within the surrounding context can improve performances. However, how to effectively and efficiently learn hidden word semantics and better represent targets and the context still needs to be further studied. Recent years have seen a revival of the long short-term memory (LSTM), with its effectiveness being demonstrated on a wide range of problems. However, LSTM based approaches are still limited to linear data processing since it processes the information sequentially. As a result, they may perform poorly on user-generated texts, such as product reviews, tweets, etc., whose syntactic structure is not precise.To tackle this challenge, <P> Methods: In this research paper, we propose a constituency tree long short term memory neural network-based approach. We compare our model with state-of-the-art baselines on SemEval 2014 datasets. <P> Results: Experiment results show that our models obtain competitive performances compared to various supervised LSTM architectures. <P> Conclusion: Our work contributes to the improvement of state-of-the-art aspect-level opinion mining methods and offers a new approach to support human decision-making process based on opinion mining results.

Author(s):  
Xingjian Lai ◽  
Huanyi Shui ◽  
Jun Ni

Throughput bottlenecks define and constrain the productivity of a production line. Prediction of future bottlenecks provides a great support for decision-making on the factory floor, which can help to foresee and formulate appropriate actions before production to improve the system throughput in a cost-effective manner. Bottleneck prediction remains a challenging task in literature. The difficulty lies in the complex dynamics of manufacturing systems. There are multiple factors collaboratively affecting bottleneck conditions, such as machine performance, machine degradation, line structure, operator skill level, and product release schedules. These factors impact on one another in a nonlinear manner and exhibit long-term temporal dependencies. State-of-the-art research utilizes various assumptions to simplify the modeling by reducing the input dimensionality. As a result, those models cannot accurately reflect complex dynamics of the bottleneck in a manufacturing system. To tackle this problem, this paper will propose a systematic framework to design a two-layer Long Short-Term Memory (LSTM) network tailored to the dynamic bottleneck prediction problem in multi-job manufacturing systems. This neural network based approach takes advantage of historical high dimensional factory floor data to predict system bottlenecks dynamically considering the future production planning inputs. The model is demonstrated with data from an automotive underbody assembly line. The result shows that the proposed method can achieve higher prediction accuracy compared with current state-of-the-art approaches.


2020 ◽  
Vol 23 (65) ◽  
pp. 124-135
Author(s):  
Imane Guellil ◽  
Marcelo Mendoza ◽  
Faical Azouaou

This paper presents an analytic study showing that it is entirely possible to analyze the sentiment of an Arabic dialect without constructing any resources. The idea of this work is to use the resources dedicated to a given dialect \textit{X} for analyzing the sentiment of another dialect \textit{Y}. The unique condition is to have \textit{X} and \textit{Y} in the same category of dialects. We apply this idea on Algerian dialect, which is a Maghrebi Arabic dialect that suffers from limited available tools and other handling resources required for automatic sentiment analysis. To do this analysis, we rely on Maghrebi dialect resources and two manually annotated sentiment corpus for respectively Tunisian and Moroccan dialect. We also use a large corpus for Maghrebi dialect. We use a state-of-the-art system and propose a new deep learning architecture for automatically classify the sentiment of Arabic dialect (Algerian dialect). Experimental results show that F1-score is up to 83% and it is achieved by Multilayer Perceptron (MLP) with Tunisian corpus and with Long short-term memory (LSTM) with the combination of Tunisian and Moroccan. An improvement of 15% compared to its closest competitor was observed through this study. Ongoing work is aimed at manually constructing an annotated sentiment corpus for Algerian dialect and comparing the results


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1290 ◽  
Author(s):  
Rahman ◽  
Siddiqui

Abstractive text summarization that generates a summary by paraphrasing a long text remains an open significant problem for natural language processing. In this paper, we present an abstractive text summarization model, multi-layered attentional peephole convolutional LSTM (long short-term memory) (MAPCoL) that automatically generates a summary from a long text. We optimize parameters of MAPCoL using central composite design (CCD) in combination with the response surface methodology (RSM), which gives the highest accuracy in terms of summary generation. We record the accuracy of our model (MAPCoL) on a CNN/DailyMail dataset. We perform a comparative analysis of the accuracy of MAPCoL with that of the state-of-the-art models in different experimental settings. The MAPCoL also outperforms the traditional LSTM-based models in respect of semantic coherence in the output summary.


Author(s):  
Jing Wang ◽  
Yingwei Pan ◽  
Ting Yao ◽  
Jinhui Tang ◽  
Tao Mei

Image paragraph generation is the task of producing a coherent story (usually a paragraph) that describes the visual content of an image. The problem nevertheless is not trivial especially when there are multiple descriptive and diverse gists to be considered for paragraph generation, which often happens in real images. A valid question is how to encapsulate such gists/topics that are worthy of mention from an image, and then describe the image from one topic to another but holistically with a coherent structure. In this paper, we present a new design --- Convolutional Auto-Encoding (CAE) that purely employs convolutional and deconvolutional auto-encoding framework for topic modeling on the region-level features of an image. Furthermore, we propose an architecture, namely CAE plus Long Short-Term Memory (dubbed as CAE-LSTM), that novelly integrates the learnt topics in support of paragraph generation. Technically, CAE-LSTM capitalizes on a two-level LSTM-based paragraph generation framework with attention mechanism. The paragraph-level LSTM captures the inter-sentence dependency in a paragraph, while sentence-level LSTM is to generate one sentence which is conditioned on each learnt topic. Extensive experiments are conducted on Stanford image paragraph dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, CAE-LSTM increases CIDEr performance from 20.93% to 25.15%.


2021 ◽  
Vol 25 (3) ◽  
pp. 1671-1687
Author(s):  
Andreas Wunsch ◽  
Tanja Liesch ◽  
Stefan Broda

Abstract. It is now well established to use shallow artificial neural networks (ANNs) to obtain accurate and reliable groundwater level forecasts, which are an important tool for sustainable groundwater management. However, we observe an increasing shift from conventional shallow ANNs to state-of-the-art deep-learning (DL) techniques, but a direct comparison of the performance is often lacking. Although they have already clearly proven their suitability, shallow recurrent networks frequently seem to be excluded from the study design due to the euphoria about new DL techniques and its successes in various disciplines. Therefore, we aim to provide an overview on the predictive ability in terms of groundwater levels of shallow conventional recurrent ANNs, namely non-linear autoregressive networks with exogenous input (NARX) and popular state-of-the-art DL techniques such as long short-term memory (LSTM) and convolutional neural networks (CNNs). We compare the performance on both sequence-to-value (seq2val) and sequence-to-sequence (seq2seq) forecasting on a 4-year period while using only few, widely available and easy to measure meteorological input parameters, which makes our approach widely applicable. Further, we also investigate the data dependency in terms of time series length of the different ANN architectures. For seq2val forecasts, NARX models on average perform best; however, CNNs are much faster and only slightly worse in terms of accuracy. For seq2seq forecasts, mostly NARX outperform both DL models and even almost reach the speed of CNNs. However, NARX are the least robust against initialization effects, which nevertheless can be handled easily using ensemble forecasting. We showed that shallow neural networks, such as NARX, should not be neglected in comparison to DL techniques especially when only small amounts of training data are available, where they can clearly outperform LSTMs and CNNs; however, LSTMs and CNNs might perform substantially better with a larger dataset, where DL really can demonstrate its strengths, which is rarely available in the groundwater domain though.


Author(s):  
Hu Feifei ◽  
Zeng Shibo ◽  
Hong Danke ◽  
Zhang Situo ◽  
Song yongwei ◽  
...  

As the decision-making brain for power system operation, grid regulation and operation is a comprehensive decision-making control that combines a large amount of data, mechanism analysis, operating procedures and professional experience, and a new generation of artificial intelligence development ideas and evolution characterized by data-driven and knowledge-guided. The directions are very close. However, the current scheduling control is still based on experience and manual analysis. The massive and diverse data of the control center and the lack of logical models between the plans require a large amount of experience and knowledge associations by the control personnel. There are more repetitive human brain labor and relatively low intelligence. Therefore, deep learning is applied to the learning of power control knowledge, and a semantic understanding network based on deep Long Short Term Memory is proposed. It uses sequence labeling to extract in-depth semantic related information of different keywords and query questions, and finds key information about language problems in order to achieve fine-grained and precise query. Experiments show that the proposed network model is superior to the previous methods, and it achieves better performance in the joint extraction of fine-grained evaluation words and evaluation objects, extracts the key information and deep semantic information of query problems and corresponding cases, and realizes power scheduling based on voice interaction The model can be effectively applied in the field of power dispatching and solve a large number of problems in power dispatching and control.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255597
Author(s):  
Abdelrahman Zaroug ◽  
Alessandro Garofolini ◽  
Daniel T. H. Lai ◽  
Kurt Mudie ◽  
Rezaul Begg

The forecasting of lower limb trajectories can improve the operation of assistive devices and minimise the risk of tripping and balance loss. The aim of this work was to examine four Long Short Term Memory (LSTM) neural network architectures (Vanilla, Stacked, Bidirectional and Autoencoders) in predicting the future trajectories of lower limb kinematics, i.e. Angular Velocity (AV) and Linear Acceleration (LA). Kinematics data of foot, shank and thigh (LA and AV) were collected from 13 male and 3 female participants (28 ± 4 years old, 1.72 ± 0.07 m in height, 66 ± 10 kg in mass) who walked for 10 minutes at preferred walking speed (4.34 ± 0.43 km.h-1) and at an imposed speed (5km.h-1, 15.4% ± 7.6% faster) on a 0% gradient treadmill. The sliding window technique was adopted for training and testing the LSTM models with total kinematics time-series data of 10,500 strides. Results based on leave-one-out cross validation, suggested that the LSTM autoencoders is the top predictor of the lower limb kinematics trajectories (i.e. up to 0.1s). The normalised mean squared error was evaluated on trajectory predictions at each time-step and it obtained 2.82–5.31% for the LSTM autoencoders. The ability to predict future lower limb motions may have a wide range of applications including the design and control of bionics allowing improved human-machine interface and mitigating the risk of falls and balance loss.


2021 ◽  
Author(s):  
Naresh Kumar Thapa K ◽  
N. Duraipandian

Abstract Malicious traffic classification is the initial and primary step for any network-based security systems. This traffic classification systems include behavior-based anomaly detection system and Intrusion Detection System. Existing methods always relies on the conventional techniques and process the data in the fixed sequence, which may leads to performance issues. Furthermore, conventional techniques require proper annotation to process the volumetric data. Relying on the data annotation for efficient traffic classification may leads to network loops and bandwidth issues within the network. To address the above-mentioned issues, this paper presents a novel solution based on artificial intelligence perspective. The key idea of this paper is to propose a novel malicious classification system using Long Short-Term Memory (LSTM) model. To validate the efficiency of the proposed model, an experimental setup along with experimental validation is carried out. From the experimental results, it is proven that the proposed model is better in terms of accuracy, throughput when compared to the state-of-the-art models. Further, the accuracy of the proposed model outperforms the existing state of the art models with increase in 5% and overall 99.5% in accuracy.


Author(s):  
Guoliang Pang ◽  
Xionghui Wang ◽  
Jian-Fang Hu ◽  
Qing Zhang ◽  
Wei-Shi Zheng

Predicting future actions from observed partial videos is very challenging as the missing future is uncertain and sometimes has multiple possibilities. To obtain a reliable future estimation, a novel encoder-decoder architecture is proposed for integrating the tasks of synthesizing future motions from observed videos and reconstructing observed motions from synthesized future motions in an unified framework, which can capture the bi-directional dynamics depicted in partial videos along the temporal (past-to-future) direction and reverse chronological (future-back-to-past) direction. We then employ a bi-directional long short-term memory (Bi-LSTM) architecture to exploit the learned bi-directional dynamics for predicting early actions. Our experiments on two benchmark action datasets show that learning bi-directional dynamics benefits the early action prediction and our system clearly outperforms the state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document