Integrated Pest Management — How to do It?

1996 ◽  
Vol 25 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Reuben Ausher

Protection of crop and ornamental plants from noxious organisms — insects, nematodes, mites, pathogens and weeds — is indispensable to modern agriculture. Despite intensive control efforts, about 50% of the world's crops are lost to these organisms, at an estimated annual cost of about 400 billion dollars. Ever since the advent of synthetic pesticides in the 1940s, modern crop protection has been largely based on chemical control. Pesticide expenditures are about 20% of total farming input costs, although this figure varies substantially according to crop and region. Mounting environmental concerns and pest control failures have made It increasingly clear that the use of toxic pesticides In agriculture should be drastically reduced all over the world.

Author(s):  
Ukoroije, Rosemary Boate ◽  
Otayor, Richard Abalis

Bio-pesticides are biological derived agents that are usually applied in a manner similar to synthetic pesticides but achieve pest management in an environmental friendly way. Bioinsecticides have the advantages of been reportedly eco-friendly both to man and the environment, are target specific, lack problem of residue, least persistent in environment, locally available, easily processed and inexpensive, though with the limitation of requiring repeated applications for the achievement of optimal control of insect pests while enhancing crop protection. The mode of action of bioinsecticides on insects includes repellent action, antifeedant activity, oviposition deterrent properties, growth and development inhibition, toxicity, attractants, sterility and death. Hence, bioinsecticides can be included in integrated pest management programs for crop protection and insect pest control. The review on biopesticidal properties of some plant secondary metabolites in the leaves, stems, bark, fruits, flowers, cloves, rhizomes, grains and seeds of plants and their interference with the growth, feeding, reproduction of insect pestsfor pest management has been elaborated.


EDIS ◽  
2017 ◽  
Vol 2017 (4) ◽  
Author(s):  
Eileen A. Buss ◽  
Catherine M. Mannion ◽  
Lance S. Osborne ◽  
Adam G. Dale

Whiteflies are a common pest of many ornamental plants throughout Florida and the world. There are more than 1,500 species worldwide and over 75 reported in Florida. Some of the most economically important species in Florida are the sweetpotato whitefly, also called the silverleafwhitefly (Bemisia tabaci), the ficus whitefly (Singhiella simplex), and the citrus whitefly (Dialeurodes citri). Although infestation does not always require treatment, it is important to be able to identify and monitor for these pests for effective integrated pest management. This 8-page fact sheet describes whitefly species, their identification and biology, the damage they cause, and best management practices to control them and still maintain healthy populations of natural enemies and other beneficial insects.


EDIS ◽  
2018 ◽  
Vol 2018 (4) ◽  
Author(s):  
Nicole Benda ◽  
Adam G. Dale

Resistance to insecticide or miticide is a worry for landscape managers. Around the world, chinch bugs, leafminers, and other insect and mite pests have become resistant to dozens of insecticides, but with diligent insecticide resistance management, we can still maintain long-term effective chemical control. With few new modes of action coming onto the market, landscape managers need to be good stewards of existing products. Ultimately, resistance management means reducing exposure of pests to any one pesticide. Fortunately, there are many ways to prevent resistance and still control pests of ornamental plants and lawns, and this 6-page fact sheet written by Nicole Benda and Adam Dale and published by the UF/IFAS Entomology and Nematology Department explains how. http://edis.ifas.ufl.edu/in714


Author(s):  
Nidhi Gupta ◽  
Nitin Sharma ◽  
Seema Ramniwas

Plants play a vital role in human life since the beginning of life on earth. Plants are not only directly used as a feed and fodder for humans and animals but are also used as drugs, food additives, pesticides, in flavor and fragrances and dye and pigments. The plants produce compounds for their growth and development and also produce secondary metabolites which provide additional properties to plants. These secondary metabolites produced by plant are responsible for these activities. Plants as a whole or in extracts/fractions form have been used as pesticides for protection of plants since thousands of years. Pyrethrum, neem, rotenone are such plants which has been used in many cultures and traditions for crop protection since ages and hold relevance in today’s world as well. The plant extracts contain secondary metabolites which provide protection to plants against pests by either causing mortality of pests or act as repellent to them. They can also impact pests by causing anti-feedancy, toxicity, alters insects behavior during oviposition and mating and inhibition of progeny emergence in pests. Essential oils isolated from the plants have also pesticidal properties. Lemongrass essential oil, Citronella essential oils, Tea tree essential oils and Oregano essential oils are the commonly used essential oils against the pests. In this review, botanical pesticides are discussed and their role in pest management and their advantageous over synthetic pesticides in terms of biodegradability, posing no or low risk to humans, environment and non-target organisms. Also, the future of botanical pesticides is discussed where they can be an alternative to synthetic pesticides if more research is done on their stability, efficacy, safety, modes of action, cost reduction is done.


Author(s):  
J. R. McNeill

This chapter discusses the emergence of environmental history, which developed in the context of the environmental concerns that began in the 1960s with worries about local industrial pollution, but which has since evolved into a full-scale global crisis of climate change. Environmental history is ‘the history of the relationship between human societies and the rest of nature’. It includes three chief areas of inquiry: the study of material environmental history, political and policy-related environmental history, and a form of environmental history which concerns what humans have thought, believed, written, and more rarely, painted, sculpted, sung, or danced that deals with the relationship between society and nature. Since 1980, environmental history has come to flourish in many corners of the world, and scholars everywhere have found models, approaches, and perspectives rather different from those developed for the US context.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 116
Author(s):  
Daniela Coppola ◽  
Chiara Lauritano ◽  
Fortunato Palma Esposito ◽  
Gennaro Riccio ◽  
Carmen Rizzo ◽  
...  

Following the growth of the global population and the subsequent rapid increase in urbanization and industrialization, the fisheries and aquaculture production has seen a massive increase driven mainly by the development of fishing technologies. Accordingly, a remarkable increase in the amount of fish waste has been produced around the world; it has been estimated that about two-thirds of the total amount of fish is discarded as waste, creating huge economic and environmental concerns. For this reason, the disposal and recycling of these wastes has become a key issue to be resolved. With the growing attention of the circular economy, the exploitation of underused or discarded marine material can represent a sustainable strategy for the realization of a circular bioeconomy, with the production of materials with high added value. In this study, we underline the enormous role that fish waste can have in the socio-economic sector. This review presents the different compounds with high commercial value obtained by fish byproducts, including collagen, enzymes, and bioactive peptides, and lists their possible applications in different fields.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Ipsita Das ◽  
Girish Kumar ◽  
Narendra G. Shah

Insects and pests constitute a major threat to food supplies all over the world. Some estimates put the loss of food grains because of infestation to about 40% of the world production. Contemporary disinfestation methods are chemical fumigation, ionizing radiation, controlled atmosphere, conventional hot air treatment, and dielectric heating, that is, radio frequency and microwave energy, and so forth. Though chemical fumigation is being used extensively in stored food grains, regulatory issues, insect resistance, and environmental concerns demand technically effective and environmentally sound quarantine methods. Recent studies have indicated that microwave treatment is a potential means of replacing other techniques because of selective heating, pollution free environment, equivalent or better quality retention, energy minimization, and so forth. The current paper reviews the recent advances in Microwave (MW) disinfestation of stored food products and its principle and experimental results from previous studies in order to establish the usefulness of this technology.


2016 ◽  
Vol 72 (10) ◽  
pp. 1813-1825 ◽  
Author(s):  
Shelagh T DeLiberto ◽  
Scott J Werner

Sign in / Sign up

Export Citation Format

Share Document