scholarly journals Microwave Heating as an Alternative Quarantine Method for Disinfestation of Stored Food Grains

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Ipsita Das ◽  
Girish Kumar ◽  
Narendra G. Shah

Insects and pests constitute a major threat to food supplies all over the world. Some estimates put the loss of food grains because of infestation to about 40% of the world production. Contemporary disinfestation methods are chemical fumigation, ionizing radiation, controlled atmosphere, conventional hot air treatment, and dielectric heating, that is, radio frequency and microwave energy, and so forth. Though chemical fumigation is being used extensively in stored food grains, regulatory issues, insect resistance, and environmental concerns demand technically effective and environmentally sound quarantine methods. Recent studies have indicated that microwave treatment is a potential means of replacing other techniques because of selective heating, pollution free environment, equivalent or better quality retention, energy minimization, and so forth. The current paper reviews the recent advances in Microwave (MW) disinfestation of stored food products and its principle and experimental results from previous studies in order to establish the usefulness of this technology.

Author(s):  
J. R. McNeill

This chapter discusses the emergence of environmental history, which developed in the context of the environmental concerns that began in the 1960s with worries about local industrial pollution, but which has since evolved into a full-scale global crisis of climate change. Environmental history is ‘the history of the relationship between human societies and the rest of nature’. It includes three chief areas of inquiry: the study of material environmental history, political and policy-related environmental history, and a form of environmental history which concerns what humans have thought, believed, written, and more rarely, painted, sculpted, sung, or danced that deals with the relationship between society and nature. Since 1980, environmental history has come to flourish in many corners of the world, and scholars everywhere have found models, approaches, and perspectives rather different from those developed for the US context.


1996 ◽  
Vol 25 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Reuben Ausher

Protection of crop and ornamental plants from noxious organisms — insects, nematodes, mites, pathogens and weeds — is indispensable to modern agriculture. Despite intensive control efforts, about 50% of the world's crops are lost to these organisms, at an estimated annual cost of about 400 billion dollars. Ever since the advent of synthetic pesticides in the 1940s, modern crop protection has been largely based on chemical control. Pesticide expenditures are about 20% of total farming input costs, although this figure varies substantially according to crop and region. Mounting environmental concerns and pest control failures have made It increasingly clear that the use of toxic pesticides In agriculture should be drastically reduced all over the world.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 116
Author(s):  
Daniela Coppola ◽  
Chiara Lauritano ◽  
Fortunato Palma Esposito ◽  
Gennaro Riccio ◽  
Carmen Rizzo ◽  
...  

Following the growth of the global population and the subsequent rapid increase in urbanization and industrialization, the fisheries and aquaculture production has seen a massive increase driven mainly by the development of fishing technologies. Accordingly, a remarkable increase in the amount of fish waste has been produced around the world; it has been estimated that about two-thirds of the total amount of fish is discarded as waste, creating huge economic and environmental concerns. For this reason, the disposal and recycling of these wastes has become a key issue to be resolved. With the growing attention of the circular economy, the exploitation of underused or discarded marine material can represent a sustainable strategy for the realization of a circular bioeconomy, with the production of materials with high added value. In this study, we underline the enormous role that fish waste can have in the socio-economic sector. This review presents the different compounds with high commercial value obtained by fish byproducts, including collagen, enzymes, and bioactive peptides, and lists their possible applications in different fields.


1898 ◽  
Vol 48 (14) ◽  
pp. 238-238
Author(s):  
Seymour Eaton
Keyword(s):  

2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Giuseppe Grasso

Despite the enormous number of therapeutic advances in medicine, nowadays many diseases are still incurable, mainly due to the lack of knowledge of the pathological biochemical pathways triggering those diseases. For this reason, it is compulsory for the scientific community to investigate and unveil the biomolecular mechanisms responsible for the development of those diseases, such as Alzheimer’s disease and diabetes, which are widespread all over the world. In this scenario, it is of paramount importance to develop new analytical techniques and experimental procedures that are capable to make the above-mentioned investigations feasible. These new methods should allow easy performable analysis carried out in a label-free environment, in order to give reliable answers to specific biochemical questions. A recent paper published on Bioscience Reports by Ivancic et al. (https://doi.org/10.1042/BSR20181416) proposes a new analytical technique capable to reveal some mechanistic insights into the regulation of insulin-degrading enzyme (IDE), a protein involved in the above-mentioned diseases. IDE is a multifaceted enzyme having different and not well-defined roles in the cell, but it is primarily a proteolytic enzyme capable to degrade several different amyloidogenic substrates involved in different diseases. Moreover, many molecules are responsible for IDE activity modulation so that understanding how IDE activity is regulated represents a very challenging analytical task. The new analytical approach proposed by Ivancic et al. reports on the possibility to study IDE activity in an unbiased and label-free manner, representing a valid alternative assay for the investigation of any proteases degradative activity.


1998 ◽  
Vol 14 (2) ◽  
pp. 159-163 ◽  
Author(s):  
M. M. C. Tsang ◽  
M. Shintaku

2020 ◽  
Vol 20 (2) ◽  
pp. 165
Author(s):  
Wei Hon Seah ◽  
Alecia Sze Mun Wong ◽  
Wei Qin Nie Naik ◽  
Chun Mun Tan ◽  
Choon Lai Chiang ◽  
...  

Yellow mealworm is an alternative protein source studied by researchers to provide an alternative supply of protein to meet the growing demands of human consumption. In this research, convective baking of yellow mealworms at 80°C, 100°C, and 120°C was carried out to study the baking kinetics and product quality. Studies showed the typical falling trend of the moisture ratio curves, which are typical for most bioproducts that undergo hot air treatment. Mathematical modelling showed that the Page model gave a good prediction on the baking kinetics with high fitting accuracy (R2>0.99). Effective diffusivities were determined from 1.66 x 10-11 to 2.88 x 10-11 m2/s within the temperatures tested. The activation energy was estimated at 15.7 kJ/mol based on the Arrhenius equation. The final baked samples appeared darker in color because the browning reaction and reduction in bulk density and product length were observed in the range of 48-54% and 3.0-16.3%, respectively.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3883
Author(s):  
Megan Roux ◽  
Cristiano Varrone

It is widely accepted that plastic waste is one of the most urgent environmental concerns the world is currently facing. The emergence of bio-based plastics provides an opportunity to reduce dependency on fossil fuels and transition to a more circular plastics economy. For polyethylene terephthalate (PET), one of the most prevalent plastics in packaging and textiles, two bio-based alternatives exist that are similar or superior in terms of material properties and recyclability. These are polyethylene furanoate (PEF) and polytrimethylene terephthalate (PTT). The overarching aim of this study was to examine the transition from fossil-based to renewable plastics, through the lens of PET upcycling into PEF and PTT. The process for the production of PEF and PTT from three waste feed streams was developed in the SuperPro Designer software and the economic viability assessed via a discounted cumulative cash flow (DCCF) analysis. A techno-economic analysis of the designed process revealed that the minimum selling price (MSP) of second generation-derived PEF and PTT is 3.13 USD/kg, and that utilities and the feedstock used for the production of 2,5-furandicarboxylic acid (FDCA) needed in PEF synthesis contributed the most to the process operating costs. The effect of recycling PEF and PTT through the process at three recycling rates (42%, 50% and 55%) was investigated and it was revealed that increased recycling could reduce the MSP of the 2G bio-plastics (by 48.5%) to 1.61 USD/kg. This demonstrates that the plastic biorefinery, together with increasing recycling rates, would have a beneficial effect on the economic viability of upcycled plastics.


Sign in / Sign up

Export Citation Format

Share Document