scholarly journals Review of anthraquinone applications for pest management and agricultural crop protection

2016 ◽  
Vol 72 (10) ◽  
pp. 1813-1825 ◽  
Author(s):  
Shelagh T DeLiberto ◽  
Scott J Werner
2018 ◽  
Vol 29 (3) ◽  
pp. 102-103
Author(s):  
Ken Pallett

2020 ◽  
Author(s):  
Mariya Andriyanova ◽  
Aslanli Aslanli ◽  
Nataliya Basova ◽  
Viktor Bykov ◽  
Sergey Varfolomeev ◽  
...  

The collective monograph is devoted to discussing the history of creation, studying the properties, neutralizing and using organophosphorus neurotoxins, which include chemical warfare agents, agricultural crop protection chemical agents (herbicides and insecticides) and medicines. The monograph summarizes the results of current scientific research and new prospects for the development of this field of knowledge in the 21st century, including the use of modern physicochemical methods for experimental study and theoretical analysis of biocatalysis and its mechanisms based on molecular modeling with supercomputer power. The book is intended for specialists who are interested in the current state of research in the field of organophosphorus neurotoxins. The monograph will be useful for students, graduate students, researchers specializing in the field of physical chemistry, physicochemical biology, chemical enzymology, toxicology, biochemistry, molecular biology and genetics, biotechnology, nanotechnology and biomedicine.


1996 ◽  
Vol 25 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Reuben Ausher

Protection of crop and ornamental plants from noxious organisms — insects, nematodes, mites, pathogens and weeds — is indispensable to modern agriculture. Despite intensive control efforts, about 50% of the world's crops are lost to these organisms, at an estimated annual cost of about 400 billion dollars. Ever since the advent of synthetic pesticides in the 1940s, modern crop protection has been largely based on chemical control. Pesticide expenditures are about 20% of total farming input costs, although this figure varies substantially according to crop and region. Mounting environmental concerns and pest control failures have made It increasingly clear that the use of toxic pesticides In agriculture should be drastically reduced all over the world.


2005 ◽  
Vol 79 (4) ◽  
pp. 2614-2619 ◽  
Author(s):  
Takashi Sera

ABSTRACT Prevention of virus infections is a major objective in agriculture and human health. One attractive approach to the prevention is inhibition of virus replication. To demonstrate this concept in vivo, an artificial zinc finger protein (AZP) targeting the replication origin of the Beet severe curly top virus (BSCTV), a model DNA virus, was created. In vitro DNA binding assays indicated that the AZP efficiently blocked binding of the viral replication protein (Rep), which initiates virus replication, to the replication origin. All of the transgenic Arabidopsis plants expressing the AZP showed phenotypes strongly resistant to virus infection, and 84% of the transgenic plants showed no symptom. Southern blot analysis demonstrated that BSCTV replication was completely suppressed in the transgenic plants. Since the mechanism of viral DNA replication is well conserved among plants and mammals, this approach could be applied not only to agricultural crop protection but also to the prevention of virus infections in humans.


2022 ◽  
pp. 129-155
Author(s):  
Graham Matthews ◽  
John Tunstall

Abstract This chapter focuses on the crop protection and pest management of cotton crops in Southern Africa (Eswatini, Zimbabwe, Zambia, Malawi, Mozambique, and Angola). It discusses how new technology will bring major changes in how cotton is grown in the future.


2021 ◽  
pp. 641-668
Author(s):  
Jürgen Köhl ◽  

Bioprotectants have the potential to replace chemical pesticides in agricultural cropping systems and crop protection approaches. Development of new bioprotectants in combination with more restricted use of chemical crop protection will result in their much stronger market position in the future. Bioprotectants fulfil particular roles in current and future crop protection approaches, primarily reducing pesticide residues in harvested products in conventional systems, as well as being the first and preferred control option in integrated pest management programs and organic farming, and complementing resident microbiomes in future resilient cropping systems. The process of developing bioprotectants can take ten to 15 years. This chapter aims to give a brief overview of the role of bioprotectants in current and future crop protection approaches to stimulate discussion within the biocontrol industries, and amongst scientists and funding agencies on the need for new generations of bioprotectants for an agriculture industry undergoing transition.


2017 ◽  
Vol 60 (3) ◽  
pp. 647-656 ◽  
Author(s):  
Ingrid Zwertvaegher ◽  
Dieter Foqué ◽  
Donald Dekeyser ◽  
Stephanie Van Weyenberg ◽  
David Nuyttens

Abstract. With the implementation of integrated pest management in the European Union, growers are obliged to manage pests in a manner that minimizes health and environmental risks due to the use of plant protection products. Among other approaches, this goal can be achieved by optimizing spray application techniques. As an alternative to the predominantly used handheld equipment, such as spray guns, spray boom systems might substantially improve spray application, and thus crop protection management, in greenhouses. The aim of this proof-of-concept study was to compare different spray configurations in a spray cabin designed to spray ornamental potted plants that are moving on a conveyor belt. Seven different spray configurations were examined for optimal spray deposition in two crops (azalea and ivy) using mineral chelate tracers. The deposition tests showed that the presented prototype can satisfactorily spray potted plants up to a height of 25 cm including the pot height. The best spray deposition was found with two flat-fan nozzles oriented 35° upward, spraying at 1.0 bar and an application rate of 1047 L ha-1. This configuration increased deposition on the underside of the leaves and at the middle foliage layer compared to the other configurations that were evaluated. The spray cabin with a band spray setting has potential to mitigate the use of plant protection products and achieve a more efficient spray application compared to traditional handheld techniques and broadcast spray boom techniques. Keywords: Crop protection, Integrated pest management, Nozzle type, Spray deposition.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 710 ◽  
Author(s):  
Rossi ◽  
Sperandio ◽  
Caffi ◽  
Simonetto ◽  
Gilioli

The rational control of harmful organisms for plants (pests) forms the basis of the integrated pest management (IPM), and is fundamental for ensuring agricultural productivity while maintaining economic and environmental sustainability. The high level of complexity of the decision processes linked to IPM requires careful evaluations, both economic and environmental, considering benefits and costs associated with a management action. Plant protection models and other decision tools (DTs) have assumed a key role in supporting decision-making process in pest management. The advantages of using DTs in IPM are linked to their capacity to process and analyze complex information and to provide outputs supporting the decision-making process. Nowadays, several DTs have been developed, tackling different issues, and have been applied in different climatic conditions and agricultural contexts. However, their use in crop management is restricted to only certain areas and/or to a limited group of users. In this paper, we review the current state-of-the-art related to DTs for IPM, investigate the main modelling approaches used, and the different fields of application. We also identify key drivers influencing their adoption and provide a set of critical success factors to guide the development and facilitate the adoption of DTs in crop protection.


Sign in / Sign up

Export Citation Format

Share Document