Molecular weight and organization of cellulose at different stages of cotton fiber development

2018 ◽  
Vol 89 (5) ◽  
pp. 726-738 ◽  
Author(s):  
Sumedha Liyanage ◽  
Noureddine Abidi

There is a continuous change in cell wall composition and organization during cotton fiber development. Cotton fiber strength correlates to the molecular weight (MW) and molecular weight distribution (MWD), and organization of cellulose chains in the secondary cell wall. These parameters change drastically during fiber development. This study reports on the MW, MWD, and organization of cellulose in cotton fibers harvested from two cotton cultivars of Gossypium hirsutum L., (Texas Marker-1 and TX55) at different levels of maturity. Fiber dissolution is necessary to estimate the molecular properties of cellulose. Cellulose in mature cotton fibers is larger in MW and highly crystalline and, therefore, poorly dissolves in common solvent systems. To facilitate the dissolution, fibers were first pretreated with 23% sodium hydroxide and then dissolved in a dimethylacetamide/lithium chloride solvent system. Gel permeation chromatography of dissolved fibers indicated that cellulose in both cultivars reaches its maximum MW around 30 days post anthesis. Fourier transform infrared microspectroscopy imaging in the transmission mode indicates changes in cellulose distribution in cotton fibers with fiber development. The distributions of infrared vibrations of cellulose at 897 (β-linkage of cellulose), 1161 (anti-symmetrical C-O-C stretching of cellulose), and 1429 cm−1 (CH2 scissoring of cellulose) provided information on cellulose deposition in intact cotton fibers.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Senmiao FAN ◽  
Aiying LIU ◽  
Xianyan ZOU ◽  
Zhen ZHANG ◽  
Qun GE ◽  
...  

Abstract Background Pectin is a key substance involved in cell wall development, and the galacturonosyltransferases (GAUTs) gene family is a critical participant in the pectin synthesis pathway. Systematic and comprehensive research on GAUTs has not been performed in cotton. Analysis of the evolution and expression patterns of the GAUT gene family in different cotton species is needed to increase knowledge of the function of pectin in cotton fiber development. Results In this study, we have identified 131 GAUT genes in the genomes of four Gossypium species (G. raimondii, G. barbadense, G. hirsutum, and G. arboreum), and classified them as GAUT-A, GAUT-B and GAUT-C, which coding probable galacturonosyltransferases. Among them, the GAUT genes encode proteins GAUT1 to GAUT15. All GAUT proteins except for GAUT7 contain a conserved glycosyl transferase family 8 domain (H-DN-A-SVV-S-V-H-T-F). The conserved sequence of GAUT7 is PLN (phospholamban) 02769 domain. According to cis-elemet analysis, GAUT genes transcript levels may be regulated by hormones such as JA, GA, SA, ABA, Me-JA, and IAA. The evolution and transcription patterns of the GAUT gene family in different cotton species and the transcript levels in upland cotton lines with different fiber strength were analyzed. Peak transcript level of GhGAUT genes have been observed before 15 DPA. In the six materials with high fiber strength, the transcription of GhGAUT genes were concentrated from 10 to 15 DPA; while the highest transcript levels in low fiber strength materials were detected between 5 and 10 DPA. These results lays the foundation for future research on gene function during cotton fiber development. Conclusions The GAUT gene family may affect cotton fiber development, including fiber elongation and fiber thickening. In the low strength fiber lines, GAUTs mainly participate in fiber elongation, whereas their major effect on cotton with high strength fiber is related to both elongation and thickening.


Biologia ◽  
2020 ◽  
Vol 75 (11) ◽  
pp. 2093-2101
Author(s):  
Amina Yaqoob ◽  
Ahmad A. Shahid ◽  
Ayesha Imran ◽  
Sahar Sadaqat ◽  
Ayesha Liaqat ◽  
...  

2021 ◽  
Author(s):  
FAN Senmiao ◽  
LIU Aiying ◽  
ZOU Xianyan ◽  
ZHANG Zhen ◽  
GE Qun ◽  
...  

Abstract Background: Pectin is a key substance involved in cell wall development, and the galacturonosyltransferases (GAUTs) gene family is a critical participant in the pectin synthesis pathway. Systematic and comprehensive research on GAUTs has not been performed in cotton. Analysis of the evolution and expression patterns of the GAUT gene family in different cotton species is needed to increase knowledge of the function of pectin in cotton fiber development.Results: In this study, we identified 131 GAUT genes in the genomes of four Gossypium species (G. raimondii, G. barbadense, G. hirsutum, and G. arboreum), and classified them as GAUT-A, GAUT-B and GAUT-C. Among them, 15 GAUT genes encoded proteins (GAUT1 to GAUT15). All GAUT family genes except for the gene GAUT7 coding contained a consevrved Glyco_transf_8 domain (H-DN-A-SVV-S-V-H-T-F). The consevrved sequences of GAUT7 was a PLN (phospholamban) 02769 domain, categorized as a probable galacturonosyltransferase. According to cis-elemet analysis, GAUT genes expression may be regulated by hormones such as JA, GA, SA, ABA, Me-JA and IAA. The evolution and expression patterns of the GAUT gene family in different cotton species and the expression levels in upland cotton materials having different fiber strengths were analyzed. Peak expression of GhGAUT genes was observed before 15DPA; in the six materials with high fiber strength, the expression was concentrated from 10 to 15DPA; while the highest expression in low fiber strength materials was detected between 5 and 10 DPA. The results presented in this paper lays the foundation for future research on gene function during cotton fiber development.Conclusions: The GAUT gene family may affect cotton fiber development, including fiber elongation and fiber thickening. In the low-strength-fiber lines, GAUTs mainly participate in fiber elongation, whereas their major effect on cotton with high-strength fiber is related to both elongation and thickening.


2021 ◽  
Vol 8 (2) ◽  
pp. 1-8
Author(s):  
Chanel Angelique Fortier ◽  
Christopher Delhom ◽  
Michael K. Dowd

This work reports on two debated points related to the metal content of cotton fiber and its influence on processing. The first issue is if the metal levels of raw fibers are naturally deposited during fiber development or if the levels are influenced by weathering and harvesting conditions present after boll opening. This was tested by harvesting bolls just as they were opening and after the opened bolls were allowed to field age. The second issue relates to the importance of metal levels on fiber dyeability. Results indicate that the metal levels of newly-opened cotton were not appreciably different from those of aged cotton bolls and that the fiber metal levels after scouring and bleaching had little correlation with dye uptake. Additionally, some metal levels exceeded those previously reported and the environment appeared to have a stronger influence on fiber Ca and Mg levels than did cultivar differences.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 128 ◽  
Author(s):  
Haron Salih ◽  
Shoupu He ◽  
Hongge Li ◽  
Zhen Peng ◽  
Xiongming Du

The ethylene-insensitive3-like/ethylene-insensitive3 (EIL/EIN3) protein family can serve as a crucial factor for plant growth and development under diverse environmental conditions. EIL/EIN3 protein is a form of a localized nuclear protein with DNA-binding activity that potentially contributes to the intricate network of primary and secondary metabolic pathways of plants. In light of recent research advances, next-generation sequencing (NGS) and novel bioinformatics tools have provided significant breakthroughs in the study of the EIL/EIN3 protein family in cotton. In turn, this paved the way to identifying and characterizing the EIL/EIN3 protein family. Hence, the high-throughput, rapid, and cost-effective meta sequence analyses have led to a remarkable understanding of protein families in addition to the discovery of novel genes, enzymes, metabolites, and other biomolecules of the higher plants. Therefore, this work highlights the recent advance in the genomic-sequencing analysis of higher plants, which has provided a plethora of function profiles of the EIL/EIN3 protein family. The regulatory role and crosstalk of different metabolic pathways, which are apparently affected by these transcription factor proteins in one way or another, are also discussed. The ethylene hormone plays an important role in the regulation of reactive oxygen species in plants under various environmental stress circumstances. EIL/EIN3 proteins are the key ethylene-signaling regulators and play important roles in promoting cotton fiber developmental stages. However, the function of EIL/EIN3 during initiation and early elongation stages of cotton fiber development has not yet been fully understood. The results provided valuable information on cotton EIL/EIN3 proteins, as well as a new vision into the evolutionary relationships of this gene family in cotton species.


Sign in / Sign up

Export Citation Format

Share Document