Structural characteristics and sound absorption properties of poplar seed fibers

2020 ◽  
Vol 90 (21-22) ◽  
pp. 2467-2477
Author(s):  
Yingjie Liu ◽  
Lihua Lyu ◽  
Xiaoqing Xiong ◽  
Yongfang Qian ◽  
Hong Li ◽  
...  

In order to make reasonable utilization of poplar seed fibers, their macromolecular structure, supramolecular structure and morphological structure were analyzed by means of a biological microscope, scanning electron microscope, Fourier transform infrared spectrometer and X-ray diffractometer, and the relationship between the structure of poplar seed fiber and its sound absorption performance was explored. The acoustic impedance transfer function method was used to test the sound absorption performance of poplar seed fiber, kapok fiber, cotton fiber, wool fiber and hemp fiber aggregates that could be used in the field of sound absorption. The results showed that the order of sound absorption properties of the five fiber aggregates was as follows: kapok fiber, poplar seed fiber, cotton fiber, wool fiber, hemp fiber. The special structure of poplar seed fiber meant it had excellent sound absorption performance in the entire tested frequency range. The poplar seed fiber aggregate had a wide sound absorption frequency band and the maximum sound absorption coefficient reached 0.84, which has high application value in the field of sound absorption.

2021 ◽  
pp. 103872
Author(s):  
Behzad Mohammadi ◽  
Amir Ershad-Langroudi ◽  
Gholamreza Moradi ◽  
Abdolrasoul Safaiyan ◽  
Peymaneh Habibi

2012 ◽  
Vol 535-537 ◽  
pp. 1459-1462 ◽  
Author(s):  
Huai Qian Bao ◽  
Ning Zhang ◽  
Xue Gang Hou

For the complexity of the internal microstructure of porous aluminum foam, on the basis of Rayleigh-Kirchhoff circular tube model, taking viscosity loss and thermal transmission, the paper establishes a simplified theoretical model for sound absorption properties of aluminum foam. The paper also calculates and analyzes the influence of Static flow resistance on the sound absorption properties in the rigidity and cavity backing. The results show that the peak frequency moves to lower with the increasing of the thickness of the air layer. What’s more, there is a direct corresponding relation between flow resistance and the best sound absorption frequency range of aluminum foam. In a reasonable range of flow resistance value, the capability of sound absorption reach optimal, Aluminum Foam won’t have fine sound absorption capability if the value of flow resistance is too big or small.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4474
Author(s):  
Katarina Monkova ◽  
Martin Vasina ◽  
Peter Pavol Monka ◽  
Drazan Kozak ◽  
Jan Vanca

Noise has a negative impact on our environment and human health. For this reason, it is necessary to eliminate excessive noise levels. This paper is focused on the study of the sound absorption properties of materials with open-porous structures, which were made of acrylonitrile butadiene styrene (ABS) material using additive technology. Four types of structures (Cartesian, Octagonal, Rhomboid, and Starlit) were evaluated in this work, and every structure was prepared in three different volume ratios of the porosity and three different thicknesses. The sound absorption properties of the investigated ABS specimens were examined utilizing the normal incidence sound absorption and noise reduction coefficients, which were experimentally determined by the transfer function method using a two-microphone acoustic impedance tube. This work deals with various factors that influence the sound absorption performance of four different types of investigated ABS material’s structures. It was found, in this study, that the sound absorption performance of the investigated ABS specimens is strongly affected by different factors, specifically by the structure geometry, material volume ratio, excitation frequency of an acoustic wave, material’s thickness, and air space size behind the tested sound-absorbing materials.


Fibers ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 77
Author(s):  
Giuseppe Ciaburro ◽  
Gino Iannace

This work reports the results of experimental measurements of the sound absorption coefficient of ceramic materials using the principle of acoustic resonators. Subsequently, the values obtained from the measurements were used to train a simulation model of the acoustic behavior of the analyzed material based on artificial neural networks. The possible applications of sound-absorbing materials made with ceramic can derive from aesthetic or architectural needs or from functional needs, as ceramic is a fireproof material resistant to high temperatures. The results returned by the simulation model based on the artificial neural networks algorithm are particularly significant. This result suggests the adoption of this technology to find the finest possible configuration that allows the best sound absorption performance of the material.


2019 ◽  
Vol 50 (4) ◽  
pp. 512-525
Author(s):  
Huan Liu ◽  
Baoqi Zuo

Blend films based on polyvinyl alcohol/polyethylene oxide (70/30 wt%) undoped and doped with different concentration of graphene oxide were prepared by spiral vane electrospinning. Characteristic properties of the blend films were investigated by using X-ray diffraction and scanning electron microscopy. The sound absorption performance of the compositions (nanofiber membranes and needle punched non-woven fabric) was tested by an impedance tube. The sound absorption performance of non-woven fabric has greatly improved after combining with thin nanofiber membranes. With addition of graphene oxide, the fibers were intertwined in a loop and form a network, the areal density and surface roughness of the nanofiber membrane are reduced. Composites containing polyvinyl alcohol/polyethylene oxide nanofiber membranes and composites containing polyvinyl alcohol/polyethylene oxide/graphene oxide nanofiber membranes exhibited different sound absorption properties in different frequency bands. When the fiber coefficient of variation was small, the average sound absorption coefficient of the composite material was high. However, composites containing both polyvinyl alcohol/polyethylene oxide and polyvinyl alcohol/polyethylene oxide/graphene oxide nanofiber membranes had similar sound absorption properties, and the average sound absorption coefficient was greater than that of polyvinyl alcohol/polyethylene oxide composites.


2018 ◽  
Vol 791 ◽  
pp. 3-9
Author(s):  
Desmond Daniel Vui Sheng Chin ◽  
Musli Nizam Bin Yahya ◽  
Nazli Bin Che Din ◽  
Pauline Ong ◽  
Izzuddin Bin Zaman ◽  
...  

Micro-perforated panel (MPP) has been widely considered as a very promising alternative in absorbing sound by utilizing the concept and mechanism of Helmholtz resonator. Most of the existing MPP are made of metallic material such as aluminium or stainless steel. In this study, biodegradable composite micro-perforated panel (BC-MPP) made from kenaf fibre and polylactic acid (PLA) will be implemented. Impedance tube test shows that BC-MPP possessed excellent sound absorption properties and could rival with conventional MPP. The peak absorption of BC-MPP is also more significant compare to conventional MPP as the peak absorption almost reaches unity.


2015 ◽  
Vol 12 (4) ◽  
pp. 311-322 ◽  
Author(s):  
Xueting Liu ◽  
Xiong Yan ◽  
Li Li ◽  
Huiping Zhang

2013 ◽  
Vol 821-822 ◽  
pp. 329-332 ◽  
Author(s):  
Xue Ting Liu ◽  
Li Li ◽  
Xiong Yan ◽  
Hui Ping Zhang

More and more concern for environmental problems has led public to use natural and environmentally benign sound-absorbing materials. In this study, the sound-absorbing nonwoven composites based on kapok fiber and hollow polyester fiber were developed and sound absorption properties of kapok fiber nonwoven composites were investigated in the low frequency region of 100-500 Hz using the impedance tube method. The poor sound-absorbing at low-frequency is one of the difficult problems that urgently need to be solved in fibrous sound-absorbing materials. The effects of physical parameters, including bulk density and thickness, and depth of back cavity on sound absorption properties of composites were studied. Increasing of the bulk density, thickness and depth of back cavity is contribute to improve sound absorption properties of composites at low frequency. The comparisons of kapok fiber with polypropylene (PP) fiber and hollow polyester fiber indicated that as a natural fiber, kapok fiber had a superior acoustical properties at low frequency.


2012 ◽  
Vol 13 (7) ◽  
pp. 915-922 ◽  
Author(s):  
Nazire Deniz Yilmaz ◽  
Nancy B. Powell ◽  
Pamela Banks-Lee ◽  
Stephen Michielsen

RSC Advances ◽  
2018 ◽  
Vol 8 (37) ◽  
pp. 20968-20975 ◽  
Author(s):  
Xueliang Jiang ◽  
Zhijie Wang ◽  
Zhen Yang ◽  
Fuqing Zhang ◽  
Feng You ◽  
...  

BT/NBR-PU foam composites with two different stratified structures including double-layer and alternating multilayered have excellent low-frequency sound absorption performance.


Sign in / Sign up

Export Citation Format

Share Document