Numerical and experimental approach towards an energy-efficient compact spinning system

2021 ◽  
pp. 004051752110432
Author(s):  
Malik YH Saty ◽  
Nicholus Tayari Akankwasa ◽  
Jun Wang

Compact spinning with a lattice apron has recently become a very attractive approach for pneumatic compact yarn production spinning systems. One of the main challenges with use of this method is the high negative pressure that leads to high energy consumption. In response to this challenge, we present a numerical and experimental investigation of the effects of a three-dimensional (3D) printed guiding device on the airflow characteristics and yarn properties. Initially, the 3D numerical model of the compact spinning system was set up based on the real geometrical dimensions. Secondly, the 3D prototype was developed, simulated, and analyzed using Solidworks and Ansys. Ultimately, the design, which exhibited low negative pressure along the model domain, was adopted and then 3D printed to enable further experimental investigation. Airflow analysis results illustrated that when using the guiding device with low negative pressure, the active area of negative pressure was increased. This was due to the existence and the special design of the guiding device that prevented the decrease of the negative pressure with atmospheric pressure. This increased the transverse condensing force, which was beneficial for twisting the free-end fiber around the fiber bundle. Experimental results revealed that the three yarns spun with the guiding device achieved significant energy saving when the guiding device was used. Moreover, these yarns spun with the guiding device had better strength, hairiness, and evenness than those spun without a guiding device. The model developed can be further improved and utilized for commercial purposes, as it significantly reduces energy costs while improving yarn properties.

2020 ◽  
pp. 004051752098258
Author(s):  
Malik YH Saty ◽  
Nicholus Tayari Akankwasa ◽  
Jun Wang

The compact spinning system with a lattice apron utilizes air-flow dynamics to condense fibers in a bunch and enhance the yarn properties. One of the main challenges with this method is the lack of a comprehensive understanding of the air-flow field's effect in the condensing zone. This work presents a numerical and experimental investigation of the effects of three-dimensional (3D) printed guiding devices on the air-flow characteristics and yarn properties. Firstly, the 3D numerical model of the compact spinning system was set up based on the compact spinning machine geometrical dimensions. Secondly, different 3D prototypes were developed, simulated, and analyzed using computational fluid dynamics based on ANSYS software. The prototypes (A-type, B-type, and C-type), selected according to the simulation results, were then 3D printed to enable further experimental investigation. Air-flow analysis results in the air-suction flume area exhibiting a very high negative pressure, and the centerline zone was characterized by high velocity. Experimental results revealed that the three yarns spun with guiding devices had better strength, hairiness, and evenness than those spun without a guiding device. The model developed can be further improved and utilized for commercial purposes and is anticipated to improve compact spun yarn properties significantly.


2011 ◽  
Vol 332-334 ◽  
pp. 260-263
Author(s):  
Shi Rui Liu

In the paper the structure of the compact spinning with pneumatic groove is introduced and the characteristics of three-dimensional flow field of the compact spinning with pneumatic groove are also investigated. Results from this research confirmed that In the compact zone, the air flows to the groove and enters the inner hollow of the slot-roller through the round holes, and the air on both sides of the groove condenses to the center of it and flows to the round holes; It is beneficial to compact the fiber and make the fiber slip to the bottom of the groove with shrink shape; the velocity and negative pressure are both not homogeneous, as the round holes are not continual, and the gradient of static pressure and velocity in compact zones are also perceptible.


2012 ◽  
Vol 217-219 ◽  
pp. 1695-1698
Author(s):  
Hong Cai Ma ◽  
Long Di Cheng ◽  
Gui Xiang Yan ◽  
Shi Ping Xu

The application of compact spinning technology with suction groove for ramie was studied. This technology improved ramie yarn hairiness, breaking strength and so on. The performance of the yarn hairiness was analyzed in detail through contrast test of the compact spinning technology with suction groove and the traditional ring spinning for ramie fiber. At the same time, the comprehensive performances of ramie yarn spinning by the two kinds of spinning technologies were contrasted and analyzed. The results showed that the spinning technology with suction groove can be significantly improved ramie yarn properties: hairiness and breaking strength etc. In the spinning technology with suction groove, the optimal technological parameter for producing least yarn hairiness, A1 B1 C1 D1, is acquired, where the spindle speed A is 6600 r/min, twist B is 608 T/m, the value of negative pressure C is -3.1 kPa, and traveler D is 21 # (yarn Nm 36).


2017 ◽  
Vol 50 (4) ◽  
pp. 994-999 ◽  
Author(s):  
Nikolay Tumanov ◽  
Voraksmy Ban ◽  
Agnieszka Poulain ◽  
Yaroslav Filinchuk

Mechanochemistry is flourishing in materials science, but a characterization of the related processes is difficult to achieve. Recently, the use of plastic jars in shaker mills has enabledin situX-ray powder diffraction studies at high-energy beamlines. This paper describes an easy way to design and manufacture these jars by three-dimensional (3D) printing. A modified wall thickness and the use of a thin-walled sampling groove and a two-chamber design, where the milling and diffraction take place in two communicating volumes, allow for a reduced background/absorption and higher angular resolution, with the prospect for use at lower-energy beamlines. 3D-printed polylactic acid jars show good mechanical strength and they are also more resistant to solvents than jars made of polymethyl methacrylate. The source files for printing the jars are available as supporting information.


2020 ◽  
pp. 004051752096334
Author(s):  
Jiang Wang ◽  
Yuze Zhang ◽  
Qian Ding ◽  
Nicholus Tayari Akankwasa ◽  
Qianqian Shi ◽  
...  

The twisting process of the sliver is an important part of the yarn spinning process, but this process has not been fully characterized on the fiber scale. Herein, based on the assumption that fibers are randomly distributed in the sliver, we analyzed the simulation twisting process of the sliver model on the fiber scale. The mathematical model of the twisting process of the sliver is set up and the non-free-end twisting process is simulated using the finite element software ABAQUS®. The simulation process clearly shows the configuration changes of the sliver caused with the increase of the twist. We also divided the twisting process into 11 stages and obtained a three-dimensional model of staple yarn. Then, the relationship curve between the ring-spun yarn fineness and the number of fibers in the cross-section of the ring-spun yarn was established by spinning the yarns of different counts of 20, 25, 30, 35, 40, 45, 50, 55, 60 and 65 Ne, and the fineness of the simulated yarn was calculated. The accuracy of the simulated yarn was verified by comparing the weight of the simulated yarn and the ring-spun yarn. The model established can be used to predict yarn properties for different purposes and can also be further utilized to study other phenomena in ring-spinning technology.


1998 ◽  
Vol 5 (3) ◽  
pp. 826-828
Author(s):  
Deming Shu ◽  
Ercan E. Alp ◽  
Juan Barraza ◽  
Tuncer M. Kuzay ◽  
Tim Mooney

A novel laser angular-encoder system has been developed based on the principles of radar, the Doppler effect, optical heterodyning and self-aligning multiple-reflection optics. Using this novel three-dimensional multiple-reflection optical path, an increase in resolution of 10 to 20 times has been reached compared with commercially available laser Doppler displacement meters or laser interferometer systems. With the new angular encoder, sub-nrad resolution has been attained in the 8° measuring range in a compact set-up [about 60 (H) × 150 (W) × 370 mm (L)] for high-energy-resolution applications at the Advanced Photon Source undulator beamline 3-ID.


Author(s):  
Zhonghua Sun

Three-dimensional (3D) printing is increasingly used in medical applications with most of the studies focusing on its applications in medical education and training, pre-surgical planning and simulation, and doctor-patient communication. An emerging area of utilising 3D printed models lies in the development of cardiac computed tomography (CT) protocols for visualisation and detection of cardiovascular disease. Specifically, 3D printed heart and cardiovascular models have shown potential value in the evaluation of coronary plaques and coronary stents, aortic diseases and detection of pulmonary embolism. This review article provides an overview of the clinical value of 3D printed models in these areas with regard to the development of optimal CT scanning protocols for both diagnostic evaluation of cardiovascular disease and reduction of radiation dose. The expected outcomes are to encourage further research towards this direction.


2000 ◽  
Vol 15 (15) ◽  
pp. 2269-2288
Author(s):  
SANATAN DIGAL ◽  
RAJARSHI RAY ◽  
SUPRATIM SENGUPTA ◽  
AJIT M. SRIVASTAVA

We demonstrate the possibility of forming a single, large domain of disoriented chiral condensate (DCC) in a heavy-ion collision. In our scenario, rapid initial heating of the parton system provides a driving force for the chiral field, moving it away from the true vacuum and forcing it to go to the opposite point on the vacuum manifold. This converts the entire hot region into a single DCC domain. Subsequent rolling down of the chiral field to its true vacuum will then lead to emission of a large number of (approximately) coherent pions. The requirement of suppression of thermal fluctuations to maintain the (approximate) coherence of such a large DCC domain, favors three-dimensional expansion of the plasma over the longitudinal expansion even at very early stages of evolution. This also constrains the maximum temperature of the system to lie within a window. We roughly estimate this window to be about 200–400 MeV. These results lead us to predict that extremely high energy collisions of very small nuclei (possibly hadrons) are better suited for observing signatures of a large DCC. Another possibility is to focus on peripheral collisions of heavy nuclei.


2020 ◽  
Vol 12 (05) ◽  
pp. 2050051
Author(s):  
Khawla Essassi ◽  
Jean-Luc Rebiere ◽  
Abderrahim El Mahi ◽  
Mohamed Amine Ben Souf ◽  
Anas Bouguecha ◽  
...  

In this research contribution, the static behavior and failure mechanisms are developed for a three-dimensional (3D) printed dogbone, auxetic structure and sandwich composite using acoustic emissions (AEs). The skins, core and whole sandwich are manufactured using the same bio-based material which is polylactic acid reinforced with micro-flax fibers. Tensile tests are conducted on the skins and the core while bending tests are conducted on the sandwich composite. Those tests are carried out on four different auxetic densities in order to investigate their effect on the mechanical and damage properties of the materials. To monitor the invisible damage and damage propagation, a highly sensitive AE testing method is used. It is found that the sandwich with high core density displays advanced mechanical properties in terms of bending stiffness, shear stiffness, facing bending stress and core shear stress. In addition, the AE data points during testing present an amplitude range of 40–85[Formula: see text]dB that characterizes visible and invisible damage up to failure.


Sign in / Sign up

Export Citation Format

Share Document