Synthesis of red fluorescent dye with acid gas sensitive optical properties and fabrication of a washable and wearable textile sensor

2021 ◽  
pp. 004051752199449
Author(s):  
Junheon Lee ◽  
Heejung Jun ◽  
Yasuhiro Kubota ◽  
Taekyeong Kim

Two halochromic red fluorescent dyes, whose chromophores are the same as Nile red, were synthesized by introducing dibutyl- and dihexyl-substituents for improving their affinity toward chemically resistant and hydrophobic fibers made of high molecular weight polyethylene. The optical properties of the two synthesized dyes (Dibutyl NR, Dihexyl NR) compared with Ethyl NR (Nile red), such as the maximum absorption, Stokes shift, molar absorption coefficient, and quantum yield, were almost the same. However, the most hydrophobic Dihexyl NR exhibited the best washability of the three dyes. It was shown that the change of both the color and the fluorescence emission properties can be achieved not only in a hydrochloric acid solution but also inside the polyethylenic fiber on exposure to the gaseous phase of hydrogen chloride even at very low concentrations. The sensing performance was maintained even after several repeats. The highly sensitive and visible fluorescent acid gas sensing textile sensor having washability and reusability was fabricated.

2020 ◽  
pp. 004051752095523
Author(s):  
Junheon Lee ◽  
Taekyeong Kim

A new coumarin-based fluorescence dye, which simultaneously changes the fluorescence behavior as well as color by exposure to an acid-gas, was synthesized by modifying the dye structure so as to produce relatively long alkyl groups. The newly synthesized halochromic fluorescence dye was applied to polyethylenic fibers, such as high molecular weight polyethylene. The acid-gas sensing was functionalized not only in the solution state but also inside a matrix. A textile sensor was subsequently fabricated in this study and showed visible changes to both color and fluorescence emission properties as well as sensitivity to changes under low concentrations of gas-phase hydrogen chloride. Further, the sensing performance was sustainable and repeatable. From the washability test, it was observed that the dye did not leach out completely.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2743
Author(s):  
Jameelah Al-Harby ◽  
Haja Tar ◽  
Sadeq M. Al-Hazmy

The boron difluoride complex is known as an extraordinary class of fluorescent dyes, which has attracted research interest because of its excellent properties. This article reports the optical properties such as absorption, fluorescence, molar absorptivity, and photo-physical parameters like dipole moment, and oscillator strength of new fluorescent organic dye based on boron difluoride complex 2-(1-(difluoroboraneyl)-1,2-dihydroquinolin-2-yl)-2-(1-methylquinoxalin-2-ylidene) acetonitrile (DBDMA). The spectral characterization of the dye was measured in sol-gel glass, photosol-gel, and organic–inorganic matrices. The absorption and fluorescence properties of DBDMA in sol-gel glass matrices were compared with each other. Compared with the classical sol-gel, it was noticed that the photosol-gel matrix is the best one with immobilized DBDMA. In the latter, a large stokes shift was obtained (97 nm) and a high fluorescence quantum yield of 0.5. Special attention was paid to the addition of gold NPs into the hybrid material. The fluorescence emission intensity of the DBDMA with and without gold nanoparticles in different solid media is described, and that displayed organic–inorganic matrix behavior is the best host.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6475
Author(s):  
Jiahui Guo ◽  
Weiwei Li ◽  
Xuanliang Zhao ◽  
Haowen Hu ◽  
Min Wang ◽  
...  

Semiconducting metal oxides can detect low concentrations of NO2 and other toxic gases, which have been widely investigated in the field of gas sensors. However, most studies on the gas sensing properties of these materials are carried out at high temperatures. In this work, Hollow SnO2 nanofibers were successfully synthesized by electrospinning and calcination, followed by surface modification using ZnO to improve the sensitivity of the SnO2 nanofibers sensor to NO2 gas. The gas sensing behavior of SnO2/ZnO sensors was then investigated at room temperature (~20 °C). The results showed that SnO2/ZnO nanocomposites exhibited high sensitivity and selectivity to 0.5 ppm of NO2 gas with a response value of 336%, which was much higher than that of pure SnO2 (13%). In addition to the increase in the specific surface area of SnO2/ZnO-3 compared with pure SnO2, it also had a positive impact on the detection sensitivity. This increase was attributed to the heterojunction effect and the selective NO2 physisorption sensing mechanism of SnO2/ZnO nanocomposites. In addition, patterned electrodes of silver paste were printed on different flexible substrates, such as paper, polyethylene terephthalate and polydimethylsiloxane using a facile screen-printing process. Silver electrodes were integrated with SnO2/ZnO into a flexible wearable sensor array, which could detect 0.1 ppm NO2 gas after 10,000 bending cycles. The findings of this study therefore open a general approach for the fabrication of flexible devices for gas detection applications.


2012 ◽  
Vol 2012 (1) ◽  
pp. 001185-001190
Author(s):  
Son Nguyen ◽  
Z. Joan Delalic ◽  
David M. Kargbo ◽  
Joel B. Sheffield

The research goal is to develop a multiple gas sensing device which integrates a zeolite-Y/nile-red sensing front end with optoelectronic detector. The highly fluorescent nile red dye, included in the nanoporous structures of zeolite Y, responses to different gases by emitting fluorescence of different wavelengths. In addition, the size of the pores of zeolite Y's can be utilized to allow gases whose molecule is smaller than the pores to enter and react with the included dye. Since nanoporous structures of zeolites are manipulated, the device is expected to be more accurate, and more sensitive. Also it is able to better differentiate and detect one target in a mixture of different gases. This is achieved by incorporating fluorescent dyes into the supercages of zeolite Y's, measuring gas absorption, desorption and photo-chromic interaction of dye and gases, interfacing the zeolite/dye sensor arrays with light source and electronic detectors.


2001 ◽  
Vol 677 ◽  
Author(s):  
Su-Jin Park ◽  
Dae-Yup Shin ◽  
Seung-Hoon Choi ◽  
Han-Yong Lee ◽  
Ho-Kyoon Chung ◽  
...  

ABSTRACTFluorescent dyes including Nile Red (NR), fluorescein, rhodamine and 4- (dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) derivatives were investigated to find an application for the organic light emitting device (OLED). Relationship between the molecular structure and optical property was calculated by ab initio (HF and DFT/6-31G*) and semiempirical (AM1/PM3 and INDO/S) calculation methods for the geometry optimization and for the information of electronic transition, respectively. The absorption maximum and the oscillator strength of molecules strongly depended on the molecular dipole moment, especially for the molecules having both strong electron donor and acceptor group. Since the calculated results were comparable with several experimental results, these semiempirical molecular orbital calculation methods could be used as a powerful prediction tool for optical properties of the luminescent molecules.


2019 ◽  
Vol 1 (5) ◽  
pp. 2009-2017 ◽  
Author(s):  
E. Petromichelaki ◽  
E. Gagaoudakis ◽  
K. Moschovis ◽  
L. Tsetseris ◽  
T. D. Anthopoulos ◽  
...  

The fundamental development of the design of novel self-powered ozone sensing elements, operating at room temperature, based on p-type metal oxides paves the way to a new class of low cost, highly promising gas sensing devices.


Author(s):  
Anne M. Klinkner ◽  
Crystal R. Waites ◽  
Peter J. Bugelski ◽  
William D. Kerns

A primary effort in the understanding of the progression of atherosclerotic disease has been methods development for visualization of the atherosclerotic plaque. We introduce a new method for the qualitative analysis of lipids in atherosclerotic fatty streaks which also retains those lipids for biochemical evaluation. An original aspect of the process is the ability to view an entire fatty streak en face, selectively stained for specific lipid classes within the lesion.New Zealand white rabbits were fed a high cholesterol diet(0.15%-0.3% for 14 wks). The aorta was removed and fixed in Carson's phosphate buffered formaldehyde followed by dual staining in the fluorescent dyes Nile red and filipin. Stock solutions of nile red(0.5mg/ml acetone) and filipin(2.5mg/ml dimethyl formamide) were prepared and kept at -20°C; all subsequent steps were at RT. 0.5cm × 1.0cm pieces of aorta were trimmed and adventitia removed. The pieces were then washed 3×15 min in PBS w/o CaMg, soaked in Nile red(NR)/filipin(Fl) stain(100(il NR stock + 200μl Fl stock in 10 ml PBS for 30 min, washed in PBS 3×30 min, rinsed with distilled water, mounted(Crystal Mount, Biomedia) and coverslipped and viewed by fluorescence microscopy.


2021 ◽  
Author(s):  
Jiahui Du ◽  
Bing Zhao ◽  
Wei Kan ◽  
Haochun Yin ◽  
Tianshu Song ◽  
...  

Development of highly sensitive and selective fluorescent sensors toward Cu2+ has gained considerable attention in view of its application of environmental and biological fields. However, the strategy of sensing by...


Sign in / Sign up

Export Citation Format

Share Document