scholarly journals Patterns of Population and Urban Growth in Southwest Europe: 1920-2010

2017 ◽  
Vol 43 (6) ◽  
pp. 1021-1040 ◽  
Author(s):  
Cathy Chatel ◽  
Mateu Morillas-Torné ◽  
Albert Esteve ◽  
Jordi Martí-Henneberg

This work seeks to measure, locate, and explain changes in the distribution of population and urban growth in the territory formed by France, Italy, and the Iberian Peninsula between 1920 and 2010. This is based on population data of more than fifty-six thousand local units obtained from population censuses: the Geokhoris database that we built. Our starting viewpoint is that it is only possible to understand the extent of the urbanization process within the context of the evolution of all of the municipalities. The description of the distribution and growth of population at the local level shows the population concentration in the various urban agglomerations, and, since 1970, a relative deconcentration and extension of the cities. Within this context, a regression model helped us to identify the geographic factors that correlate with these fundamental transformations in population geography, which were also indicative of new forms of social organization within the territory.

2021 ◽  
Author(s):  
Ana-Maria Popa ◽  
Diana Andreea Onose ◽  
Ionut Cosmin Sandric ◽  
Simona Raluca Gradinaru ◽  
Athanasios Alexandru Gavrilidis

<p>Urban green infrastructure has various benefits known as ecosystem services such as regulating, cultural, provisioning and supporting services. Among the provided benefits there are decrease of air temperature, increasing humidity and mitigating urban heat island as regulating services; human-nature relations as cultural services; improving air quality, carbon sequestration as provisioning services and photosynthesis, nutrient and water cycling as supporting services. The high intensity of the urbanization process across the last decades coupled with weak legislative frameworks resulted both in large areas affected by urban sprawl and densification of the existing urban fabric. Both phenomenon generated loss in open spaces, especially green areas. In the context of the sustainable urbanization promoted by HABITAT Agenda, the knowledge related with the distribution, size and quality of urban green areas represents a priority. The study aim is to identify small urban green areas at local level at different time moments for a dynamic evaluation. We focused on small urban green areas since they are scarcely analysed even if their importance for the urban quality of life Is continuously increasing given the urbanization process. We used satellite imagery acquired by Planet Satellite Constellations, with a spatial resolution of 3.7 m and daily coverage, for extracting green areas. The images were processed using Geographic Object-Based Image Analysis (OBIA) techniques implemented in Esri ArcGIS Pro. The spatial analysis we performed generated information about distribution, surfaces, quality (based on NDVI) and dynamic of small urban green areas. The results are connected with the local level development of the urban areas we analysed, but also with the population consumption pattern for leisure services, housing, transport or other public utilities. The analysis can represent a complementary method for extracting green areas at urban level and can support the data collection for calculating urban sustainability indicators.</p>


2019 ◽  
Vol 2 ◽  
pp. 1-8
Author(s):  
Mojtaba Eslahi ◽  
Rani El Meouche ◽  
Anne Ruas

<p><strong>Abstract.</strong> Many studies, using various modeling approaches and simulation tools have been made in the field of urban growth. A multitude of models, with common or specific features, has been developed to reconstruct the spatial occupation and changes in land use. However, today most of urban growth techniques just use the historical geographic data such as urban, road and excluded maps to simulate the prospective urban maps. In this paper, adding buildings and population data as urban fabric factors, we define different urban growth simulation scenarios. Each simulation corresponds to policies that are more or less restrictive of space considering what these territories can accommodate as a type of building and as a global population.</p><p>Among the urban growth modeling techniques, dynamic models, those based on Cellular Automata (CA) are the most common for their applications in urban areas. CA can be integrated with Geographical Information Systems (GIS) to have a high spatial resolution model with computational efficiency. The SLEUTH model is one of the cellular automata models, which match the dynamic simulation of urban expansion and could be adapted to morphological model of the urban configuration and fabric.</p><p>Using the SLEUTH model, this paper provides different simulations that correspond to different land priorities and constraints. We used common data (such as topographic, buildings and demography data) to improve the realism of each simulation and their adequacy with the real world. The findings allow having different images of the city of tomorrow to choose and reflect on urban policies.</p>


Author(s):  
E. A. Adzandeh ◽  
D. Alaigba ◽  
C. N. Nkemasong

Little is known about the nature of ecosystem loss, rampant changes in land use and land cover (LULC) and urban growth taking place in Limbe. The aim of this study is to analyze urban growth in Limbe, Cameroon from 1986-2019 using geospatial techniques and Logistic Regression Model (LRM). Landsat Thematic Mapper (1986), Enhanced Thematic Mapper+ (2002) and Operational Land Imagery/Thermal Infrared Sensor (2019) were utilized in this study. The images were classified into land cover classes using supervised image classification algorithm in ENVI software. The classification output was subjected to LRM application to evaluate urban growth. Image difference of urban growth between 1986 and 2019 was calculated as dependent variable and the independent variables were produced by calculating the Euclidean distance and Buffer of built-up, waterbody, road and farmland as driving factor for urban growth. Future urban growth was determined for 2035 using the Land Change Modeler in IDRISI Selva. Classification overall accuracy for the three date were not less than 99%. LRM results show a good fit with relative operation characteristic of 0.8344 and Pseudo R2 of 0.21. Analysis of LULC shows that built-up increased from 3.5% (1986) to 17.6% (2019). An urban land expansion rate of about 23% was observed for 2035. Transition probability matrix revealed high probability (0.6345) of build-up to remaining build-up by 2035, while the probability for it changing to waterbody, bare land, farm land and vegetation are 0.1099, 0.0459, 0.1939 and 0.1221, respectively. This study successfully demonstrates the application of geo-spatial techniques and LRM for land use/land cover change detection and in understanding the urban growth dynamics. It also identifies the potential areas of future urban growth, which can help land use policy planners for making optimum decisions of land use planning and investment.


2021 ◽  
Vol 13 (22) ◽  
pp. 4624
Author(s):  
Nils B. Weidmann ◽  
Gerlinde Theunissen

Economic inequality at the local level has been shown to be an important predictor of people’s political perceptions and preferences. However, research on these questions is hampered by the fact that local inequality is difficult to measure and systematic data collections are rare, in particular in countries of the Global South. We propose a new measure of local inequality derived from nighttime light (NTL) emissions data. Our measure corresponds to the local inequality in per capita nighttime light emissions, using VIIRS-derived nighttime light emissions data and spatial population data from WorldPop. We validate our estimates using local inequality estimates from the Demographic and Health Surveys (DHS) for a sample of African countries. Our results show that nightlight-based inequality estimates correspond well to those derived from survey data, and that the relationship is not due to structural factors such as differences between urban and rural regions. We also present predictive results, where we approximate the (survey-based) level of local inequality with our nighttime light indicator. This illustrates how our approach can be used for new cases where no other data are available.


2019 ◽  
Vol 2 (1) ◽  
pp. 29-46 ◽  
Author(s):  
Nicolás A. Mari ◽  
Nicolás A. Mari ◽  
Beatriz Giobellina ◽  
Beatriz Giobellina ◽  
Alejandro Benitez ◽  
...  

In Córdoba, Argentina, the peri-urban horticulture is in conflict with industrial agriculture and urban development. This problem is partly due to urban expansion to rural areas occurred in the last years and to monoculture farming, which has replaced traditional fruit and vegetable cropping in the region. This transformation process has raised concern about the current and future availability of productive sectors that can sustain food supply within the city boundaries and its immediate surroundings as well as about the loss of ecosystem services associated with peri-urban natural environments. Although these dynamic processes are well known, they have not been described or quantified in Córdoba. Baseline information about land use and its dynamics in productive areas or about number of producers is insufficient and/or out of date. At O-AUPA (Spanish acronym for Observatory of Urban and Peri-urban Agriculture and Agroecology) different mapping strategies are developed to contribute to the understanding of the land dynamics in the Green Belt of Córdoba (GBC) and the rural environments surrounding the city. In this work, we present a method based on the use of remote sensing and geographical information systems to characterize urban, peri-urban and rural areas of Córdoba city with the aim of evaluating the temporal dynamics of urban growth and the current state of land use and cover. We mapped and quantified the urban growth between 1974 and 2014, and evaluated land use in peri-urban and rural areas in 2015. We used satellite information from Landsat TM 5 to map the urban growth via a principal component analysis (PCA) and SPOT 5 imagery to characterize the current land use and land cover with the support vector machine classification algorithm. The results show an urban area growth of 46.5% over almost 40 years within the boundaries of the Capital department. Farm plot size increased, showing a concentration of land ownership, implying a reduced number of producers. Evidence indicates the importance of defining land planning guidelines that limit the advance of the urban frontier to valuable agricultural systems, ensure diversification of productive activities and protect and develop the fresh food production systems at the local level.


Land ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 300 ◽  
Author(s):  
Kwasi Anarfi ◽  
Ross A. Hill ◽  
Chris Shiel

Ghana is urbanising rapidly, and over half of the country’s population have lived in urban areas since 2010. Although research has proliferated to explore Ghana’s urbanisation, there is a dearth of research that holistically explores the wider sustainability implications of urbanisation, offers comparative perspectives in the context of large and smaller urban areas, and provides a perspective of local level urbanisation in the context of resource extraction (mining). This study comparatively assesses two urban areas in Ghana (Kumasi and Obuasi), by conducting a spatio-temporal analysis of land cover change through remote sensing and by analysing demographic change through a synthesis of published population data, in order to highlight the sustainability implications of urbanisation. The results show that urbanisation has been rapid, and has resulted in changes in land cover and demography in Kumasi and Obuasi. The sustainability implications of urbanisation are identified to include limited economic opportunities, socio-spatial segregation, and destruction of natural vegetation. The evidence in this study provides insights into urbanisation in Ghana, and suggests that the positive sustainability impacts of urbanisation may be eroded by how factors such as market forces and land tenure interact at the local level.


2017 ◽  
Vol 59 ◽  
pp. 46-53 ◽  
Author(s):  
Erik Brolin ◽  
Dan Högberg ◽  
Lars Hanson ◽  
Roland Örtengren

Sign in / Sign up

Export Citation Format

Share Document