Wearable human–machine interface based on PVDF piezoelectric sensor

2016 ◽  
Vol 39 (4) ◽  
pp. 398-403 ◽  
Author(s):  
Wentao Dong ◽  
Lin Xiao ◽  
Wei Hu ◽  
Chen Zhu ◽  
YongAn Huang ◽  
...  

Flexible and stretchable electronics technologies have been attracting increasing attention owing to their potential applications in personal consumed electronics, wearable human–machine interfaces (HMI) and the Internet of Things (IoTs). This paper proposes an HMI based on a polyvinylidene difluoride (PVDF) sensor and laminated it onto the surface of the skin for signal classification and controlling the motion of a mobile robot. The PVDF sensor with ultra-thin stretchable substrate can make conformal contact with the surface of the skin for more accurate measurement of the electrophysiological signal and to provide more accurate control of the actuators. Microelectro-mechanical system (MEMS) technologies and transfer printing processes are adopted for fabrication of the epidermal PVDF sensor. Sensors placed on two wrists would generate two different signals with the fist clenched and loosened. It can be classified into four signals with a combination of the signals from both wrists, i.e. four control modes. Experiments demonstrated that PVDF sensors may be used as an HMI to control the motion of a mobile robot remotely.

2018 ◽  
Vol 3 (3) ◽  
pp. 1700264 ◽  
Author(s):  
Peng Peng ◽  
Kang Wu ◽  
Liangxiong Lv ◽  
Chuan Fei Guo ◽  
Zhigang Wu

2011 ◽  
Vol 267 ◽  
pp. 318-321 ◽  
Author(s):  
Lian Suo Wei ◽  
Yuan Guo ◽  
Xue Feng Dai

A path planning approach using combination of the Internet of Things and vague set of multi-objective decision-making was presented aiming at mobile robots in structured environments. The information of environment constrains and path length was integrated in the fitness function which was computed to sort scores of function values in order to realize path planning of mobile robot. Finally, it is proved by computer simulations that the algorithm is rational and can be used in real-time path planning of mobile robot.


2021 ◽  
Vol 12 ◽  
Author(s):  
Emilio Andreozzi ◽  
Gaetano D. Gargiulo ◽  
Daniele Esposito ◽  
Paolo Bifulco

The precordial mechanical vibrations generated by cardiac contractions have a rich frequency spectrum. While the lowest frequencies can be palpated, the higher infrasonic frequencies are usually captured by the seismocardiogram (SCG) signal and the audible ones correspond to heart sounds. Forcecardiography (FCG) is a non-invasive technique that measures these vibrations via force sensing resistors (FSR). This study presents a new piezoelectric sensor able to record all heart vibrations simultaneously, as well as a respiration signal. The new sensor was compared to the FSR-based one to assess its suitability for FCG. An electrocardiogram (ECG) lead and a signal from an electro-resistive respiration band (ERB) were synchronously acquired as references on six healthy volunteers (4 males, 2 females) at rest. The raw signals from the piezoelectric and the FSR-based sensors turned out to be very similar. The raw signals were divided into four components: Forcerespirogram (FRG), Low-Frequency FCG (LF-FCG), High-Frequency FCG (HF-FCG) and heart sounds (HS-FCG). A beat-by-beat comparison of FCG and ECG signals was carried out by means of regression, correlation and Bland–Altman analyses, and similarly for respiration signals (FRG and ERB). The results showed that the infrasonic FCG components are strongly related to the cardiac cycle (R2 > 0.999, null bias and Limits of Agreement (LoA) of ± 4.9 ms for HF-FCG; R2 > 0.99, null bias and LoA of ± 26.9 ms for LF-FCG) and the FRG inter-breath intervals are consistent with ERB ones (R2 > 0.99, non-significant bias and LoA of ± 0.46 s). Furthermore, the piezoelectric sensor was tested against an accelerometer and an electronic stethoscope: synchronous acquisitions were performed to quantify the similarity between the signals. ECG-triggered ensemble averages (synchronized with R-peaks) of HF-FCG and SCG showed a correlation greater than 0.81, while those of HS-FCG and PCG scored a correlation greater than 0.85. The piezoelectric sensor demonstrated superior performances as compared to the FSR, providing more accurate, beat-by-beat measurements. This is the first time that a single piezoelectric sensor demonstrated the ability to simultaneously capture respiration, heart sounds, an SCG-like signal (i.e., HF-FCG) and the LF-FCG signal, which may provide information on ventricular emptying and filling events. According to these preliminary results the novel piezoelectric FCG sensor stands as a promising device for accurate, unobtrusive, long-term monitoring of cardiorespiratory functions and paves the way for a wide range of potential applications, both in the research and clinical fields. However, these results should be confirmed by further analyses on a larger cohort of subjects, possibly including also pathological patients.


Author(s):  
Yuriy Kondratenko ◽  
Oleksandr Gerasin ◽  
Oleksiy Kozlov ◽  
Andriy Topalov ◽  
Bogdan Kilimanov

The article presents the main stages of the development of remote control system for the inspection mobile robot operating on inclined ferromagnetic surfaces. The mobile robot remains on the surface and moves along working areas using separate clamping permanent magnets and caterpillars. The focus is on the control system’s architecture and remote data transmission based on Internet of Things technologies. Features of non-expensive Arduino Uno and WeMos D1 R2 mini microcontrolled development boards, cloud service Blynk, as well as multi-tab Android application interactions are revealed at the inspection mobile robot movement on the inclined surface. Experimental results of the proposed system show a good compatibility of chosen hardware, user-friendly human-machine interface and high mobility for future research of modern control algorithms at Internet of Things approach implementation for the extreme robotics.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2047
Author(s):  
Jonathan D. Yuen ◽  
Lisa C. Shriver-Lake ◽  
Scott A. Walper ◽  
Daniel Zabetakis ◽  
Joyce C. Breger ◽  
...  

We demonstrate the viability of using ultra-thin sheets of microbially grown nanocellulose to build functional medical sensors. Microbially grown nanocellulose is an interesting alternative to plastics, as it is hydrophilic, biocompatible, porous, and hydrogen bonding, thereby allowing the potential development of new application routes. Exploiting the distinguishing properties of this material enables us to develop solution-based processes to create nanocellulose printed circuit boards, allowing a variety of electronics to be mounted onto our nanocellulose. As proofs of concept, we have demonstrated applications in medical sensing such as heart rate monitoring and temperature sensing—potential applications fitting the wide-ranging paradigm of a future where the Internet of Things is dominant.


Sign in / Sign up

Export Citation Format

Share Document