Performance prediction and analysis of disk-type eddy-current drivers

2017 ◽  
Vol 40 (5) ◽  
pp. 1568-1578 ◽  
Author(s):  
Zhao Li ◽  
Dazhi Wang ◽  
Tongyu Shi ◽  
Xue Bai

For the disk-type eddy-current drivers, an accurate and simple performance prediction method is developed. The static field produced by the permanent magnets and induction field by eddy currents are calculated using magnetic equivalent circuit method, and Faraday’s and Ampere’s law, respectively. In this model, many factors, such as the saturation effect of ferromagnetic materials, working temperature and the electromagnetic effects of back iron are taken into consideration. Compared with other methods, the model has a good agreement with three-dimensional finite-element method, and the average error is 4.9%. Finally, a prototype and corresponding test platform are made. Test results show that the proposed method is effective, and the maximum error is less than 8%. Besides, it is confirmed that eddy-current drivers can tolerate shaft misalignment and be used as speeders.

Author(s):  
Lezhi Ye ◽  
Yulong Zhang ◽  
Mingguang Cao

To solve the problem of complex operating device and permanent magnets (PMs) demagnetization at high temperature, a new type of permanent magnet fluxed-switching coupler (PMC) with synchronous rotating adjuster is proposed. Its torque can be adjusted by rotating a switched flux angle between the adjuster and PMs along the circumferential direction. The structural feature and working principle of the PMC are introduced. The analytical model of the novel PMC was established. The torque curves are calculated in transient field by using the three-dimensional finite element method (3-D FEM). The temperature distribution of the novel PMC under rated condition is calculated by 3-D FEM, and the temperature distribution of the PM is compared with that of the conventional PMC. The simulation and test results show that the maximum temperature of copper disc and PM of the novel PMC are 100 °C and 48 °C respectively. The novel PMC can work stably for a long time under the maximum load condition.


Author(s):  
E Swain

A one-dimensional centrifugal compressor performance prediction technique that has been available for some time is updated as a result of extracting the component performance from three-dimensional computational fluid dynamic (CFD) analyses. Confidence in the CFD results is provided by comparison of overall performance for one of the compressor examples. The extracted impeller characteristic is compared with the original impeller loss model, and this indicated that some improvement was desirable. The position of least impeller loss was determined using a traditional axial compressor cascade method, and suitable algebraic expressions were derived to match the CFD data. The merit of the approach lies with the relative ease that CFD component performance currently can be achieved and adjusting one-dimensional methods to agree with the CFD-derived models.


Author(s):  
Karl Hollaus

Purpose The simulation of eddy currents in laminated iron cores by the finite element method (FEM) is of great interest in the design of electrical devices. Modeling each laminate by finite elements leads to extremely large nonlinear systems of equations impossible to solve with present computer resources reasonably. The purpose of this study is to show that the multiscale finite element method (MSFEM) overcomes this difficulty. Design/methodology/approach A new MSFEM approach for eddy currents of laminated nonlinear iron cores in three dimensions based on the magnetic vector potential is presented. How to construct the MSFEM approach in principal is shown. The MSFEM with the Biot–Savart field in the frequency domain, a higher-order approach, the time stepping method and with the harmonic balance method are introduced and studied. Findings Various simulations demonstrate the feasibility, efficiency and versatility of the new MSFEM. Originality/value The novel MSFEM solves true three-dimensional eddy current problems in laminated iron cores taking into account of the edge effect.


Author(s):  
C.H.H.M. Custers ◽  
J.W. Jansen ◽  
M.C. van Beurden ◽  
E.A. Lomonova

PurposeThe purpose of this paper is to describe a semi-analytical modeling technique to predict eddy currents in three-dimensional (3D) conducting structures with finite dimensions. Using the developed method, power losses and parasitic forces that result from eddy current distributions can be computed.Design/methodology/approachIn conducting regions, the Fourier-based solutions are developed to include a spatially dependent conductivity in the expressions of electromagnetic quantities. To validate the method, it is applied to an electromagnetic configuration and the results are compared to finite element results.FindingsThe method shows good agreement with the finite element method for a large range of frequencies. The convergence of the presented model is analyzed.Research limitations/implicationsBecause of the Fourier series basis of the solution, the results depend on the considered number of harmonics. When conducting structures are small with respect to the spatial period, the number of harmonics has to be relatively large.Practical implicationsBecause of the general form of the solutions, the technique can be applied to a wide range of electromagnetic configurations to predict, e.g. eddy current losses in magnets or wireless energy transfer systems. By adaptation of the conductivity function in conducting regions, eddy current distributions in structures containing holes or slit patterns can be obtained.Originality/valueWith the presented technique, eddy currents in conducting structures of finite dimensions can be modeled. The semi-analytical model is for a relatively low number of harmonics computationally faster than 3D finite element methods. The method has been validated and shown to be computationally accurate.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1408 ◽  
Author(s):  
Tomasz Chady ◽  
Jacek Grochowalski

In this paper, we present an eddy current transducer with rotating permanent magnets for the inspection of planar conducting plates. The transducer consists of a rotating head with permanent magnets, which is used to generate variable magnetic fields and thus induce eddy currents in the tested material. Two Hall sensors connected in a differential manner are used to detect a nonuniform distribution of eddy currents induced in a specimen containing a defect. To prove the usability of the transducer, a number of experiments were conducted on thick aluminum samples containing notches at different depths. Selected results of the achieved measurements are presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jinbao Yao ◽  
Lei Fang

This paper adopts a combination of numerical simulation, field test, and Random Forest to predict the building vibration induced by moving train. First, a three-dimensional finite element model based on train-track-site soil-building system is established, and the track dynamic reaction force calculated by the train-track model is applied as an excitation to the site. On the soil-building model, this paper analyzes the influence of train speed, axle load, site soil characteristics, and distance from the building on the vibration of the building caused by the train. With the Random Forest, these different influencing factors are used as inputs, and the building vibration is the output. Thus, the prediction model of the building vibration caused by moving train is established. The prediction accuracy can be tested with the measured data. The results show that this prediction method can provide a higher prediction accuracy with the maximum error (less than 6.41%) and the average error (less than 2.29%). This method overcomes the shortcomings of traditional prediction methods and improves the accuracy of vibration prediction.


Sign in / Sign up

Export Citation Format

Share Document