Electromagnetic performance and thermal analysis of a novel permanent magnet fluxed-switching coupler

Author(s):  
Lezhi Ye ◽  
Yulong Zhang ◽  
Mingguang Cao

To solve the problem of complex operating device and permanent magnets (PMs) demagnetization at high temperature, a new type of permanent magnet fluxed-switching coupler (PMC) with synchronous rotating adjuster is proposed. Its torque can be adjusted by rotating a switched flux angle between the adjuster and PMs along the circumferential direction. The structural feature and working principle of the PMC are introduced. The analytical model of the novel PMC was established. The torque curves are calculated in transient field by using the three-dimensional finite element method (3-D FEM). The temperature distribution of the novel PMC under rated condition is calculated by 3-D FEM, and the temperature distribution of the PM is compared with that of the conventional PMC. The simulation and test results show that the maximum temperature of copper disc and PM of the novel PMC are 100 °C and 48 °C respectively. The novel PMC can work stably for a long time under the maximum load condition.

2007 ◽  
Vol 129 (6) ◽  
pp. 1028-1034 ◽  
Author(s):  
Liang Wang ◽  
Sergio Felicelli

A three-dimensional finite element model was developed to predict the temperature distribution and phase transformation in deposited stainless steel 410 (SS410) during the Laser Engineered Net Shaping (LENS™) rapid fabrication process. The development of the model was carried out using the SYSWELD software package. The model calculates the evolution of temperature in the part during the fabrication of a SS410 plate. The metallurgical transformations are taken into account using the temperature-dependent material properties and the continuous cooling transformation diagram. The ferritic and martensitic transformation as well as austenitization and tempering of martensite are considered. The influence of processing parameters such as laser power and traverse speed on the phase transformation and the consequent hardness are analyzed. The potential presence of porosity due to lack of fusion is also discussed. The results show that the temperature distribution, the microstructure, and hardness in the final part depend significantly on the processing parameters.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Jia Xiaohan ◽  
Zhang Qingqing ◽  
Feng Jianmei ◽  
Peng Xueyuan

The nonuniform abrasion failure and high-temperature thermal failure of packing rings have a significant influence on compressor reliability, particularly that of oil-free compressors. In this study, a test rig was constructed to measure the dynamic temperature of packing rings under different operational conditions in an oil-free reciprocating compressor. The dynamic axial and radial temperature distributions of the packing rings were obtained using an innovative internal temperature testing device that kept the thermocouples and packing box relatively static during compressor operation. A three-dimensional heat transfer model was also developed to analyze the temperature distribution of the packing boxes, piston rod, and cylinder during such operation. Good agreement was observed between the simulation results and experimental data, which showed an average relative error of less than 2.35%. The results indicate that the pressure ratio exerts a significant effect on the axial temperature distribution and determines which packing ring reaches the maximum temperature. They also show the average temperature to rise with an increase in the rotational speed and to fall with an improvement in the external cooling conditions. Finally, the material of the packing rings was found to affect the temperature gradient from their inner to outer surface.


Author(s):  
Jun Yu ◽  
Zhen’an Tang ◽  
Zhengxing Huang ◽  
Chong Feng

Previous studies of bridge-based micro calorimeters have shown that these devices can measure heat capacity and melting point of ultra thin films with pulse scan calorimetry. The bridge-based micro calorimeters consist of a sample region and several beams that connecting the sample region with silicon substrate. Both the sample region and the beams are suspending on the silicon substrate for thermal isolation. The temperature distribution of the micro calorimeter during a heating pulse depends on the joule-heating of the heating resistor, the heat absorption and heat conduct of the bridge. The heat transfer through the beams during a pulse scan measurement is complex because there is heat generation on some beams and the temperature distribution along the beams is not uniform. Using three dimensional finite element analyses (FEA), the thermal-electrical simulations of the heat transfer in the bridge-based micro calorimeters have been performed. The heat consumption and temperature distribution at steady state analyses, the temperature response of the bridge and the heat generation of the heater at transient analyses have been calculated for the bridge-based micro calorimeter with different sample thermal conductivities and heat capacities. The simulation results indicate that for the bridge-based microcalorimeter using pulse calorimetry, when the heat capacity of the sample film is close to or larger than the heat capacity of an empty calorimeter, the differential method of getting the sample heat capacity from the difference between a micro calorimeter with and without the sample is no longer suitable because the heat transfer and temperature distributions of the two calorimeters are no longer comparable to each other.


2020 ◽  
Vol 26 (6) ◽  
pp. 465-474
Author(s):  
Deepak Singh ◽  
Dhananjay Singh ◽  
Sattar Husain

This research article reports the computational analysis of temperature distribution in microwave-heated convenience food such as potato. The detailed study of temperature (because temperature is a function of bacterial inactivation) and microwave powers along with drying time for the preservation of food material has been presented. Therefore, a mathematical model for potato sample is developed to predict the behavior of temperature distribution at each possible point and different shapes (slab, cylindrical, and spherical) of food material. The developed mathematical model is programmed by MATLAB software. Another parameter, microwave power is also a function of temperature. The ranging values of various microwave powers (125 W, 375 W, 625 W, 875 W, and 1250 W) along with different values of drying time (0 to 10 minutes) have been used for computation. The obtained results show the uniformity of temperature distribution throughout the whole product in the form of a three-dimensional structure. The model provides the minimum and maximum temperature ranges in specimens without performing an experiment which depicts the condition of bacterial inactivation.


2020 ◽  
Vol 103 (4) ◽  
pp. 003685042096785
Author(s):  
Jianguo Duan ◽  
Qinglei Zhang ◽  
Xintao Long ◽  
Kebin Zhang

Semi-built-up crankshafts are universally manufactured by shrink-fitting process with induction heating device. The configurations of induction coil have a great impact on the distributions of eddy current and temperature of crankthrows. Most induction devices are apt to cause some undesirable phenomena such as uneven temperature distribution and irregular deformation after induction heating. This article proposes a modified configuration of induction heating coil according to the crankthrow geometry. By combining the heat conduction equation and the heat boundary conditions, a three-dimensional finite element model, which takes into account the nonlinearity of the material’s electromagnetic and thermal physical properties in the heating process, was developed. The influence of several parameters, such as position and curvature of the arc coil, the current frequency and density, coaxiality of crankweb hole and coil, influencing the temperature distribution inside the crankthrow was also analyzed. The comparison with the numerical simulation results of the original configuration indicates that the modified configuration has better adaptability to the crankthrow. Also, it can help to improve the temperature distribution, and reduce the deformation of the shrink-fitting hole. This exploration provide an effective way for the enterprise to further enhance the shrink-fitting quality of crankshaft.


2007 ◽  
Vol 10-12 ◽  
pp. 864-868 ◽  
Author(s):  
Wei Zuo ◽  
Bin Shen ◽  
Fang Hong Sun ◽  
Ming Chen

Three-dimensional finite element simulations were used to investigate the influences of various hot filaments and other deposition parameters on the temperature field of substrates which affect significantly the growth and quality of diamond films by hot filament chemical vapor deposition (HFCVD) and based on the simulation results, the optimum position for diamond deposition was found. In the experiment, six cemented tungsten carbide inserts were used as substrates and placed on the workbench in the CVD reactor to deposit diamond films. According to the temperature distribution on substrates measured by thermocouple fixed in CVD reactor, the simulations were validated and the optimum arrangement of substrates was established from the simulation results. In addition, the simulation model was altered to optimize the process parameters of HFCVD deposition, and an improved process of depositing diamond films with high quality was obtained in order to achieve the great surface morphology, which laid the foundation of developing a new method to arrange the substrates in the CVD reactor for depositing diamond films.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 631-642 ◽  
Author(s):  
Krzysztof Komeza ◽  
Marcin Lefik ◽  
Daniel Roger ◽  
Ewa Napieralska Juszczak ◽  
Hamed Elmadah ◽  
...  

Abstract The subject of the paper is a three-dimensional analysis of a coupled fluid-thermal and electromagnetic field in permanent magnet synchronous machine that can work at very high temperatures. To obtain the distribution of the airflow and temperature we employed the coupled fluid-thermal model of the machine. This allowed us to check whether the temperature in sensitive elements does not exceed the permissible limits. The analysis took into account the effect of the color and the smoothness of the machine housing on the temperature distribution in its interior. The influence of design on the temperature distribution and distribution of hot spots was tested. Two topologies are studied considering magnet mounted on the rotor surface or buried in the rotor soft magnetic core. The simulation results were compared with measurements made on a prototype.


2020 ◽  
Vol 20 (03) ◽  
pp. 2050005
Author(s):  
SOMAYYE RABBANI ARSHAD ◽  
ATA HASHEMI ◽  
IMAN ZOLJANAHI OSKUI

Purpose: To evaluate the thermal performance of PEEK dental implant and compare it with its conventional counterparts, i.e., titanium (Ti) and zirconia ([Formula: see text]). Materials and Methods: A three-dimensional finite element model of the dental implant and the surrounding bone was developed to simulate thermal analysis of the implant with three different materials, i.e., Ti, ZrO2 and PEEK for two types of heat load. Zirconia artificial crown was utilized in all three different implant materials. Results: In loading type I, the maximum temperature of the mandible bone at the cervical implant/bone interface was almost the same (37.7∘C) in all models, but the time to reach this temperature was 18[Formula: see text]s for Ti, 30[Formula: see text]s for ZrO2 and 65.7[Formula: see text]s for PEEK implant. The maximum temperature in loading type II was 41.8∘C, 41.6∘C and 41.3∘C, respectively, in ZrO2, Ti and PEEK models. Ti implant showed the fastest rising and recovery time. Conclusions: Under the considered heat loads, the maximum temperatures in the bone were below the bone necrosis temperature in all three cases. In addition the temperature change along the implant body in [Formula: see text] and PEEK implants are smaller than that in Ti. Moreover, PEEK was found to be a thermally viable option for dental implants.


Sign in / Sign up

Export Citation Format

Share Document