Synchronization control for robot manipulators driven by induction motors with flux and velocity observers

2019 ◽  
Vol 41 (16) ◽  
pp. 4535-4544
Author(s):  
Felipe-de-Jesús Torres ◽  
Gerardo-Vicente Guerrero ◽  
Carlos-Daniel García ◽  
Diego-Alfredo Núñez ◽  
Juan Mota

This paper presents a design of synchronization of robot manipulators driven by induction motors in the case where the flux, velocity and currents are estimated. The synchronization is developed in both the joint space and workspace. The [Formula: see text] field oriented frame model of the induction motor is used to design the synchronization control approach. An observer based on the [Formula: see text] frame model is proposed to estimate the flux, velocity and currents variables, then they are converted to the variables of the [Formula: see text] field-oriented model, and finally the remaining variables are estimated by means of an observer based on the [Formula: see text] frame model. Stability is proved via a Lyapunov analysis. Simulations show the proposed controllers yield synchronization errors asymptotically stables in the closed-loop response.

2006 ◽  
Vol 129 (3) ◽  
pp. 337-342 ◽  
Author(s):  
Hong-Tao Liu ◽  
Jinjun Shan ◽  
Dong Sun

An adaptive nonlinear synchronization control approach is developed for multiple spacecraft formation flying with elliptical reference orbits. It can guarantee that both the tracking errors and the synchronization errors of the relative positions converge to zero globally, even in the presence of uncertain parameters. The generalized synchronization concept allows us to design various synchronization errors so that different synchronization performance can be obtained. Simulation results of a leader-follower spacecraft pair and the maneuvering of multiple spacecraft in formation flying are presented to verify the effectiveness of the proposed control technique.


2004 ◽  
Vol 16 (1) ◽  
pp. 90-96 ◽  
Author(s):  
B. Daachi ◽  
◽  
A. Benallegue ◽  
T. Madani ◽  
M. E. Daachi ◽  
...  

In this paper, neural networks of MLP type are used to control constrained redundant robot manipulators with obstacles. The proposed controller is determined using extended Cartesian space to minimise the joint displacements and to avoid obstacles. The neural networks have been used to approximate separately, the functions of the dynamic model of the robot manipulator expressed in the Cartesian space. The adaptation laws weights of each neural network, are obtained via stability study in Lyapunov sense of the system in closed loop. The performances of the proposed control approach are tested on a 3-degree of freedom robot manipulators involving in the vertical space.


2020 ◽  
Vol 23 (02) ◽  
pp. 124-135
Author(s):  
Muhammad Haris ◽  
Muhammad Shafiq ◽  
Adyda Ibrahim ◽  
Masnita Misiran

This paper proposes, designs, and analyses a novel nonlinear feedback controller that realizes fast, and oscillation free convergence of the synchronization error to the equilibrium point. Oscillation free convergence lowers the failure chances of a closed-loop system due to the reduced chattering phenomenon in the actuator motion, which is a consequence of low energy sm ooth control signal. The proposed controller has a novel structure. This controller does not cancel nonlinear terms of the plant in the closed-loop; this attribute improves the robustness of the loop. The controller consists of linear and nonlinear parts; each part executes a specific task. The linear term in the controller keeps the closed-loop stable, while the nonlinear part of the controller facilitates the fast convergence of the error signal to the vicinity of the origin. Then the linear controller synthesizes a smooth control signal that moves the error signals to zero without oscillations. The nonlinear term of the controller does not contribute to this synthesis. The collaborative combination of linear and nonlinear controllers that drive the synchronization errors to zero is innovative. The paper establishes proof of global stability and convergence behavior by describing a detailed analysis based on the Lyapunov stability theory. Computer simulation results of two numerical examples verify the performance of the proposed controller approach. The paper also provides a comparative study with state-of-the-art controllers.


2021 ◽  
Vol 20 ◽  
pp. 272-280
Author(s):  
Antonis Vouzikas ◽  
Alexandros Gazis

This article studies the problem of designing robust control laws to achieve multiple performance objectives for linear uncertain systems. Specifically, in this study we have selected one of the control objectives to be a closed-loop pole placement in specific regions of the left-half complex plane. As such, a guaranteed cost based multi-objective control approach is proposed and compared with the H_2/H_∞control by means of an application example


2018 ◽  
Vol 15 (1) ◽  
pp. 172988141875737 ◽  
Author(s):  
Marija Tomić ◽  
Kosta Jovanović ◽  
Christine Chevallereau ◽  
Veljko Potkonjak ◽  
Aleksandar Rodić

In this article, we explore human motion skills in the dual-arm manipulation tasks that include contact with equipment with the final aim to generate human-like humanoid motion. Human motion is analyzed using the optimization approaches starting with the assumption that human motion is optimal. A combination of commonly used optimization criteria in the joint space with the weight coefficients is considered: minimization of kinetic energy, minimization of joint velocities, minimization of the distance between the current and ergonomic positions, and maximization of manipulability. The contribution of each criterion for seven different dual-arm manipulation tasks to provide the most accurate imitation of the human motion is given via suggested inverse optimization approach calculating values of weight coefficients. The effects on actors’ body characteristics and the characteristics of the environment (involved equipment) on the choice of criterion functions are additionally analyzed. The optimal combination of weight coefficients calculated by the inverse optimization approach is used in our inverse kinematics algorithm to transfer human motion skills to the motion of the humanoid robots. The results show that the optimal combination of weight coefficients is able to generate human-like humanoid motions rather than individual one of the considered criterion functions. The recorded human motion and the motion of the humanoid robot ROMEO, obtained with the strategy used by human and defined by our inverse optimal control approach, for the tasks “opening/closing a drawer” are assessed visually and quantitatively.


Author(s):  
Hanlei Wang ◽  
Yongchun Xie

In this paper, we investigate the attitude synchronization problem for multiple networked spacecraft, and the spacecraft agents are assumed to interact on an undirected and connected graph. We adopt a physically motivated PD-like attitude consensus scheme which takes Euler parameters or quaternions of the error orientation matrix between the spacecraft agents as the attitude deviation, resulting in nonlinear attitude coupling among the networked spacecraft agents and additionally multiple equilibria of the closed-loop networked system. The stability of the closed-loop networked system is shown by the Lyapunov stability analysis. To show the convergence of the attitude synchronization errors, we develop a new tool called cyclic constraint analysis. With this synthesis tool, we show that attitude synchronization is achieved without relying on any assumptions of the spacecraft orientations. Simulation study is presented to shed some light on the obtained results.


Sign in / Sign up

Export Citation Format

Share Document