scholarly journals Exploring the distribution of energy consumption in a northeast Chinese city based on local climate zone scheme: Shenyang city as a case study

2020 ◽  
Vol 38 (5) ◽  
pp. 2079-2094
Author(s):  
Guang Yang ◽  
Yanpeng Fu ◽  
Minghui Yan ◽  
Jing Zhang

The local climate zone (LCZ) scheme is now used to investigate urban heat islands, which provides additional reference for energy consumption simulation. Based on the LCZ scheme, a LCZ mapping of Shenyang, a city in northeast China, was first constructed using the World Urban Database and Access Portal Tools (WUDAPT) Level 0 method. Subsequently, DeST-h was considered to simulate the energy consumption of urban buildings with concentration areas. The results show that with Shenyang being a severely cold area, the annual energy consumption of heating is approximately twice that of refrigeration for an individual building. The total energy consumption of open-distributed single buildings is higher than that of compact-distributed single buildings. Consequently, the unit cumulative energy consumption in compact-distributed buildings is higher than that in openly distributed building areas. The compact high-rise buildings (LCZ 1) have the highest energy consumption, with a unit annual energy consumption of 123,771.150 MW·h, which is equivalent to 41,257 tons of standard coal combustion power generation. Considering the energy consumption of residential buildings, the central high-rise buildings group and the compact centralized middle-rise buildings in the downtown area are high energy consumption areas. For future urban planning, design strategies such as energy-saving transformation and energy planning should be considered. The research results can provide a scientific basis and theoretical support for reducing building energy consumption, alleviating the urban heat island effect, and the development of modern urban planning.

2014 ◽  
Vol 21 ◽  
pp. 3-13 ◽  
Author(s):  
George Thomas ◽  
A.P. Sherin ◽  
Shareekul Ansar ◽  
E.J. Zachariah

2019 ◽  
Vol 136 ◽  
pp. 05011
Author(s):  
Kaikai Mu ◽  
Yan Liu ◽  
Moyan Zhang ◽  
Bing Han ◽  
Liu Yang

Urbanization seriously affects the urban climate and the quality of human settlement. Based on Landsat8 remote sensing and building vector data, local climate zone (LCZ) method is employed to study the influences of urban form on land surface temperature (LST) of Xi'an. The results confirmed that the LST of the built-up LCZ is higher than the land cover LCZ. In built-up LCZ, LST is increasing with the increasing of building density. In land cover LCZ, the LST of bare land is the highest. Surface urban heat island (SUHI) of 14 samples in LCZ also been calculated. Highest SUHI intensity is found in low-rise buildings with high density area. LST intensity of water body and forest are lower than others in land cover LCZ.


2016 ◽  
Vol 25 (6) ◽  
pp. 2609-2616 ◽  
Author(s):  
Zhihao Wang ◽  
Wu Xing ◽  
Yi Huang ◽  
Tongan Xie

2022 ◽  
pp. 111835
Author(s):  
Rajashree Kotharkar ◽  
Aveek Ghosh ◽  
Shashwata Kapoor ◽  
Devireddy Girish Kumar Reddy

2021 ◽  
Vol 65 (1) ◽  
pp. 83-92
Author(s):  
Valeria Todeschi ◽  
Simone Beltramino ◽  
Bernadette El Jamous ◽  
Guglielmina Mutani

Nowadays, energy consumption in buildings is one of the fundamental drivers to control greenhouse gas emissions and environmental impact. In fact, the air quality of urban environments can cause two main phenomena in metropolitan areas: urban heat island and climate changes. The aim of this work is to showcase how different building variables can impact the residential building’s space heating and cooling energy consumption. Buildings energy-related variables can be fundamental viewpoints to improve the energy performance of neighborhoods, especially in future urban planning. This work examines four neighborhoods in the city of Turin (IT): Arquata, Crocetta, Sacchi, and Olympic Village characterized by different morphologies and building typologies. In each neighborhood, residential building was grouped according to orientations and construction periods. A sensitivity analysis was applied by analysing six building variables: infiltration rate, window-to-wall ratio, and windows, walls, roofs, and floor thermal transmittances. The energy consumption for space heating and cooling of residential buildings and local climate conditions were investigated using CitySim Pro tool and ENVI-met. The challenge of this work is to identify the building variables that most influence energy consumption and to understand how to promote high-energy efficiency neighborhoods: the goal is to identify the “ideal” urban form with low consumption and good comfort conditions in outdoor urban environments. The results of this work show a significant connection between the energy consumption and the six analyzed building variables; however, this relationship also depends on the shape and orientation of the neighborhood.


Author(s):  
Lingfei Shi ◽  
Feng Ling ◽  
Giles M. Foody ◽  
Zhen Yang ◽  
Xixi Liu ◽  
...  

The surface urban heat island (SUHI) effect poses a significant threat to the urban environment and public health. This paper utilized the Local Climate Zone (LCZ) classification and land surface temperature (LST) data to analyze the seasonal dynamics of SUHI in Wuhan based on the Google Earth Engine platform. In addition, the SUHI intensity derived from the traditional urban–rural dichotomy was also calculated for comparison. Seasonal SUHI analysis showed that (1) both LCZ classification and the urban–rural dichotomy confirmed that Wuhan’s SHUI effect was the strongest in summer, followed by spring, autumn and winter; (2) the maximum SUHI intensity derived from LCZ classification reached 6.53 °C, which indicated that the SUHI effect was very significant in Wuhan; (3) LCZ 8 (i.e., large low-rise) had the maximum LST value and LCZ G (i.e., water) had the minimum LST value in all seasons; (4) the LST values of compact high-rise/midrise/low-rise (i.e., LCZ 1–3) were higher than those of open high-rise/midrise/low-rise (i.e., LCZ 4–6) in all seasons, which indicated that building density had a positive correlation with LST; (5) the LST values of dense trees (i.e., LCZ A) were less than those of scattered trees (i.e., LCZ B) in all seasons, which indicated that vegetation density had a negative correlation with LST. This paper provides some useful information for urban planning and contributes to the healthy and sustainable development of Wuhan.


2020 ◽  
Vol 13 (1) ◽  
pp. 83
Author(s):  
Yunwei Zhang ◽  
Jili Zhang ◽  
Xiaoqian Zhang ◽  
Dian Zhou ◽  
Zhaolin Gu

Urbanization has induced significant changes on local climate in urban areas. For sustainable urban planning, it is necessary to identify the distribution characteristics of urban heat island (UHI) and the effects of land cover properties. In situ measurements are frequently carried out to obtain critical data in urban climate studies. However, long-time continuous observations on multiple sites are still rare, even though they would be useful in mapping the distribution of UHI intensity. In the current work, three observation campaigns were carried out in Xi’an, China. Pedestrian- level air temperatures (PLAT) were measured with potable micro-environment stations on 50 sites in 11 local climate zone (LCZ) types. The normalized PLAT was used to investigate the canopy layer UHI characteristics and the effects of LCZ types. Results revealed that the land coverage type and the surface structure have significant influence on the local climate. The PLAT in high-surface-fraction building covered areas was higher than that in low-surface-fraction building covered areas. In areas with similar building surface fraction, building height influences the UHI magnitude as well, as tall buildings would provide more shielding on the pedestrian level. The average UHI magnitude and the standard deviation within each LCZ type were calculated by statistical analysis of the observed results, which proved to be useful for UHI mapping based on the LCZ classification results in urban areas.


Urban Climate ◽  
2020 ◽  
Vol 31 ◽  
pp. 100540 ◽  
Author(s):  
Emmanuel Matsaba Ochola ◽  
Elham Fakharizadehshirazi ◽  
Aggrey Ochieng Adimo ◽  
John Bosco Mukundi ◽  
John Mwibanda Wesonga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document