The Effect of Sintering Temperature to the Properties of Zinc Oxide

2013 ◽  
Vol 795 ◽  
pp. 419-423 ◽  
Author(s):  
J.H. Lim ◽  
C.K. Yeoh ◽  
Pei Leng Teh ◽  
W.M. Arif ◽  
A. Chik

In this paper, different sintering temperature used to study the influence of temperature on the structural and thermal properties of zinc oxide (ZnO). On this research, the sample was prepared by solid-state method for zinc oxide (ZnO) at different sintering temperature which was 700°C, 800°C and 900°C. It was observed that the density of bulk ZnO that sintering at 900°C had the higher value of density 5.03 g/cm3. The microhardness of the bulk ZnO had a higher measurement 397.3 Hv after sintered at 900°C. ZnO that sintering at 900°C had been observed that had thermal conductivity 1.1611W/cm-K in the sintering temperature range 700°C to 900°C.

2018 ◽  
Vol 47 (39) ◽  
pp. 13913-13925 ◽  
Author(s):  
Qi Bao ◽  
Zhijun Wang ◽  
Jiang Sun ◽  
Zhipeng Wang ◽  
Xiangyu Meng ◽  
...  

A series of color-tunable NaBa1−zSrzB9O15:Ce3+,Mn2+ phosphors were synthesized by a high temperature solid state method.


2015 ◽  
Vol 655 ◽  
pp. 78-81
Author(s):  
Shu He Ai ◽  
Yu Jun Zhang ◽  
Hong Yu Gong ◽  
Qi Song Li

AlN/SiC composites with 5 wt.% Y2O3addition were fabricated by pressureless sintering at 1700-1950 oC. The influences of sintering temperature and SiC content on the relative density, mechanical property and thermal conductivity were studied. With sintering temperature increasing from 1700 oC to 1750 oC, the relative density increased significantly to about 98.0%, without evident changes from 1750 oC to 1900 oC, and then decreased slightly at 1950 oC. As SiC content increased, the flexural strength of composites sintered at 1750 oC increased firstly, and then decreased, obtaining a maximum flexural strength of 337 MPa at 20 wt.% SiC content. Meanwhile, the thermal conductivity decreased from 60 W/(m∙K) to 40 W/(m∙K) with SiC content increasing from 0 wt.% to 30 wt.%. Moreover, in the sintering temperature range from 1750 oC to 1950 oC, the thermal conductivity increased from 45 W/(m∙K) to 55 W/(m∙K) for AlN-10 wt.% SiC composites, but decreased from 40 W/(m∙K) to 36 W/(m∙K) for AlN-30 wt.% SiC composites.


2010 ◽  
Vol 434-435 ◽  
pp. 235-239
Author(s):  
Bo Li ◽  
Xiao Hua Zhou ◽  
Shu Ren Zhang ◽  
Long Cheng Xiang

The microwave properties and microstructures of (ZnMg)TiO3-based dielectric prepared by conventional solid-state method were investigated as functions of CaTiO3 and CaO-B2O3-SiO2 additions. The effects of CaTiO3 on the crystal phase and the evolution of microstructure of (Zn0.65Mg0.35)TiO3 were studied. The result indicated that CaTiO3 secondary phase coexists with (ZnMg)TiO3 main phase in the ZMT-CT ceramics, which confirmed by EDS analysis. Because of CaTiO3 with large τf value (τf = 800 ppm/°C), the temperature coefficient of resonant frequency (τf) of ZMT-CT with biphasic structure was adjusted to near zero value. The microwave properties of (Zn0.65Mg0.35)TiO3 ceramics doped with 5wt% CaTiO3 sintered at 1150°C were ε ≈ 24, τf ≈ ±10 ppm/°C, Q×f > 45,000 GHz. Further, it was found that the CaO-B2O3-SiO2 additive could successfully reduce the sintering temperature of (Zn0.65Mg0.35)TiO3–CaTiO3 ceramics from 1150 to 950°C, and significantly improve the densification of this system, which were densified below 1000°C. This was due to the formation of liquid phases during the sintering observed by SEM. The (Zn0.65Mg0.35)TiO3–0.05CaTiO3 dielectrics with 1 wt% CaO-B2O3-SiO2 sintered at 950~1000°C exhibited the optimum microwave properties: ε ≈ 22, Q×f ≈ 20,000 GHz and τf ≈ ±10 ppm/°C.


2021 ◽  
Vol 63 (7) ◽  
pp. 944
Author(s):  
O.А. Липина ◽  
Л.Л. Сурат ◽  
А.А. Меленцова ◽  
Я.В. Бакланова ◽  
А.Ю. Чуфаров ◽  
...  

Triorthogermanates BaYb2-xErxGe3O10 (x = 0.1–0.3) and BaY2-10yYb9yEryGe3O10 (y = 0.015–0.15) have been synthesized by the solid-state method. According to X-ray powder diffraction data, the compounds crystallize in the monoclinic system, S.G. P21/m, Z = 2. The concentration and power pump dependences studies have been carried out for the lines in the 510–720 nm spectral range under 980 nm excitation. The mechanisms of energy transfer between optical centers have been also proposed and the optimal composition of the phosphor has been determined. The influence of temperature on the intensity ratio of the luminescence bands with maxima at 521 nm and 552 nm (2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions in Er3+) has been investigated, and conclusions about the possibility of using the germanates as materials for optical temperature sensors have been drawn.


2012 ◽  
Vol 512-515 ◽  
pp. 1155-1159 ◽  
Author(s):  
Xin Ye Yang ◽  
Xiao Hui Wang ◽  
An Ji ◽  
Long Tu Li

Both BaTi4O9 and Ba2Ti9O20 have the best microwave properties among many compounds in BaO-TiO2 system. The microwave performance of the ceramics in BaO-TiO2 system, which were prepared by conventional solid state method, was investigated in this paper. The study indicates that the (Ti,Zr)/Ba ratio has a great effect on the dielectric properties of the ceramic due to different BaTi4O9/Ba2Ti9O20 ratio. The pure BaTi4O9 ceramic exhibits the most outstanding microwave properties, with εr=35.55 and Q×f=43300GHz. On the contrary, the dielectric property of the pure Ba2Ti9O20 ceramic was not good enough, which should be doped with some additive additions. WO3 was incorporated into the system and the sintering temperature was adjusted to improve the microwave dielectric property. The Q×f was increased to 38000GHz by adding 1.35mol% WO3 due to the formation of a little BaWO4 phase. When sintered at a higher temperature (1380°C), the BaO-TiO2 system ceramic has εr =37.04 and Q×f =44874GHz.


2012 ◽  
Vol 16 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Guo-Qing Zhang ◽  
Wenjuan Li ◽  
Hongwei Yang ◽  
Yahui Wang ◽  
Sowjanya B. Rapole ◽  
...  

Lithium titanate (Li4Ti5O12) was prepared by a quasi solid-state method using water and ethanol as the solvents, in which Li2CO3 and TiO2 were used as the starting materials. In this work, the calcination temperature, molar ratio of Li to Ti, and sintering time were all well investigated. The obtained samples were thoroughly characterized by XRD and SEM, revealing that the above three factors not only affected the crystal structure, but also the morphologies of the resultant samples. Galvanostatic charge discharge curves were also employed to evaluate the electrochemical performance of the samples. The best electrochemical performance of the samples was observed when the molar ratio of Li to Ti, sintering temperature and time are 6:5, 850 oC and 12 hours, respectively. It was revealed that the smaller particle size and the higher crystallinity of the resultant samples were favorable to enhance the electrochemical performance.


2013 ◽  
Vol 575-576 ◽  
pp. 91-94
Author(s):  
Xin You Huang ◽  
Mu Sheng Huang ◽  
Chun Hua Gao ◽  
Zhi Gang Chen

The influence of the BaSiO3 dopant on the dielectric properties of (Ba,Sr)TiO3(BST) capacitor ceramics was studied using conventional capacitor ceramics solid state method and XRD , SEM and other analytical methods. The results show that BaSiO3 doping can improve the sintering and microstructure of the capacitor ceramics. SEM study show that BaSiO3 doping can make grain grow uniformly and suppress the grain to grow up, and the structure of ceramics is compact with little pore. XRD study show that there is little SiO2 phase and little influence of BST lattice parameter when BaSiO3 doped amount is 3 mol%.The dielectric properties of BST ceramics doped with 3 mol% BaSiO3 are as follows: dielectric constant (εr) of 1792, which is a little higher than undoped BST ceramics, tanδ of 1%, which is decreased 7.24% compared with undoped BST ceramics, and the sintering temperature decreases 40°C.


2014 ◽  
Vol 1035 ◽  
pp. 155-160 ◽  
Author(s):  
Sheng Jie Yang ◽  
Feng Gao ◽  
Meng Jie Qin ◽  
Chao Chao Zhang ◽  
Xi Xi Huang

Sr3Ti2O7ceramics with pure Ruddlesden-Popper phase (RP) were synthesized by conventional solid state method. The influences of the Bi2O3addition, the calcination temperature, and the sintering temperature on the phase transition were studied. The results showed that for the samples without doping Bi2O3, the main phase of calcined powders is Sr3Ti2O7, but pure Sr3Ti2O7phase cannot be obtained in the sintered ceramics because of the Sr3Ti2O7decomposition. For the samples doping with Bi2O3, although the main phase of the calcined powder is SrTiO3, the single RP phase Sr3Ti2O7can be obtained after sintering, which should be attributed to the formation of Sr3Bi2O6phase during calcination stage. Bi2O3addition is beneficial to the formation of the Sr3Ti2O7RP phase.


Sign in / Sign up

Export Citation Format

Share Document