scholarly journals Assessment of Preclinical Liver and Skeletal Muscle Biomarkers Following Clofibrate Administration in Wistar Rats

2017 ◽  
Vol 45 (4) ◽  
pp. 506-525 ◽  
Author(s):  
Pierre Maliver ◽  
Matthias Festag ◽  
Moritz Bennecke ◽  
Francois Christen ◽  
Balázs Bánfai ◽  
...  

Clofibrate is a known rodent hepatotoxicant classically associated with hepatocellular hypertrophy and increased serum activities of cellular alanine aminotransferase/aspartate aminotransferase (ALT/AST) in the absence of microscopic hepatocellular degeneration. At toxic dose, clofibrate induces liver and skeletal muscle injury. The objective of this study was to assess novel liver and skeletal muscle biomarkers following clofibrate administration in Wistar rats at different dose levels for 7 days. In addition to classical biomarkers, liver injury was assessed by cytokeratin 18 (CK18) cleaved form, high-mobility group box 1, arginase 1 (ARG1), microRNA 122 (miR-122), and glutamate dehydrogenase. Skeletal muscle injury was evaluated with fatty acid binding protein 3 (Fabp3) and myosin light chain 3 (Myl3). Clofibrate-induced hepatocellular hypertrophy and skeletal muscle degeneration (type I rich muscles) were noted microscopically. CK, Fabp3, and Myl3 elevations correlated to myofiber degeneration. Fabp3 and Myl3 outperformed CK for detection of myofiber degeneration of minimal severity. miR-122 and ARG1 results were significantly correlated and indicated the absence of liver toxicity at low doses of clofibrate, despite increased ALT/AST activities. Moreover, combining classical and novel biomarkers (Fabp3, Myl3, ARG1, and miR-122) can be considered a valuable strategy for differentiating increased transaminases due to liver toxicity from skeletal muscle toxicity.

2012 ◽  
Vol 21 (11) ◽  
pp. 2407-2424 ◽  
Author(s):  
Jin-Kyu Park ◽  
Mi-Ran Ki ◽  
Eun-Mi Lee ◽  
Ah-Young Kim ◽  
Sang-Young You ◽  
...  

Recently, adipose tissue-derived stem cells (ASCs) were emerged as an alternative, abundant, and easily accessible source of stem cell therapy. Previous studies revealed losartan (an angiotensin II type I receptor blocker) treatment promoted the healing of skeletal muscle by attenuation of the TGF-β signaling pathway, which inhibits muscle differentiation. Therefore, we hypothesized that a combined therapy using ASCs and losartan might dramatically improve the muscle remodeling after muscle injury. To determine the combined effect of losartan with ASC transplantation, we created a muscle laceration mouse model. EGFP-labeled ASCs were locally transplanted to the injured gastrocnemius muscle after muscle laceration. The dramatic muscle regeneration and the remarkably inhibited muscular fibrosis were observed by combined treatment. Transplanted ASCs fused with the injured or differentiating myofibers. Myotube formation was also enhanced by ASC+ satellite coculture and losartan treatment. Thus, the present study indicated that ASC transplantation effect for skeletal muscle injury can be dramatically improved by losartan treatment inducing better niche.


2006 ◽  
Vol 290 (6) ◽  
pp. R1488-R1495 ◽  
Author(s):  
Mukesh Summan ◽  
Gordon L. Warren ◽  
Robert R. Mercer ◽  
Rebecca Chapman ◽  
Tracy Hulderman ◽  
...  

The study evaluates the influence of monocytes/macrophages in the mechanisms of skeletal muscle injury using a mouse model and selective depletion of peripheral monocyte with systemic injections of liposomal clodronate (dichloromethylene bisphosphonate). This pharmacological treatment has been demonstrated to induce specific apoptotic death in monocytes and phagocytic macrophages. In the current studies, the liposomal clodronate injections resulted in a marked attenuation of the peak inflammatory response in the freeze-injured muscle in the first three days after injury. The effect was accompanied by a transient reduction (at day 1 or 3 postinjury) of the expression of several genes coding for inflammatory, as well as growth-related mediators, including TNF, monocyte chemoattractant protein (MCP)-1, thioredoxin, high-mobility group AT-hook 1, insulin-like growth factor-binding protein (IGFBP), and IGF-1. In contrast, the expression of major myogenic factors (i.e., MyoD and myogenin) directly involved in the activation/proliferation and differentiation of muscle precursor cells was not altered by the clodronate liposome treatment. The repair process in the injured muscle of clodronate liposome-treated mice was characterized by prolonged clearance of necrotic myofibers and a tendency for increased muscle fat accumulation at day 9 and 14 postinjury, respectively. In conclusion, a significant reduction of the initial monocyte/macrophage influx into the injured muscle is associated with not improved, but moderately impaired, repair processes after skeletal muscle injury.


2020 ◽  
Vol 17 (6) ◽  
pp. 887-900
Author(s):  
Manal H. Moussa ◽  
Ghada G. Hamam ◽  
Asmaa E. Abd Elaziz ◽  
Marwa A. Rahoma ◽  
Abeer A. Abd El Samad ◽  
...  

Circulation ◽  
1995 ◽  
Vol 92 (10) ◽  
pp. 2848-2854 ◽  
Author(s):  
Frans A. Van Nieuwenhoven ◽  
Appie H. Kleine ◽  
K. Will H. Wodzig ◽  
Wim T. Hermens ◽  
Hans A. Kragten ◽  
...  

2009 ◽  
Vol 28 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Andres J. Quintero ◽  
Vonda J. Wright ◽  
Freddie H. Fu ◽  
Johnny Huard

2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Bruno Paun ◽  
Daniel García Leon ◽  
Alex Claveria Cabello ◽  
Roso Mares Pages ◽  
Elena de la Calle Vargas ◽  
...  

Abstract Background Skeletal muscle injury characterisation during healing supports trauma prognosis. Given the potential interest of computed tomography (CT) in muscle diseases and lack of in vivo CT methodology to image skeletal muscle wound healing, we tracked skeletal muscle injury recovery using in vivo micro-CT in a rat model to obtain a predictive model. Methods Skeletal muscle injury was performed in 23 rats. Twenty animals were sorted into five groups to image lesion recovery at 2, 4, 7, 10, or 14 days after injury using contrast-enhanced micro-CT. Injury volumes were quantified using a semiautomatic image processing, and these values were used to build a prediction model. The remaining 3 rats were imaged at all monitoring time points as validation. Predictions were compared with Bland-Altman analysis. Results Optimal contrast agent dose was found to be 20 mL/kg injected at 400 μL/min. Injury volumes showed a decreasing tendency from day 0 (32.3 ± 12.0mm3, mean ± standard deviation) to day 2, 4, 7, 10, and 14 after injury (19.6 ± 12.6, 11.0 ± 6.7, 8.2 ± 7.7, 5.7 ± 3.9, and 4.5 ± 4.8 mm3, respectively). Groups with single monitoring time point did not yield significant differences with the validation group lesions. Further exponential model training with single follow-up data (R2 = 0.968) to predict injury recovery in the validation cohort gave a predictions root mean squared error of 6.8 ± 5.4 mm3. Further prediction analysis yielded a bias of 2.327. Conclusion Contrast-enhanced CT allowed in vivo tracking of skeletal muscle injury recovery in rat.


2016 ◽  
Vol 42 (3) ◽  
pp. 343-349 ◽  
Author(s):  
O. E. Zinovyeva ◽  
A. Yu. Emelyanova ◽  
N. D. Samkhaeva ◽  
N. S. Shcheglova ◽  
B. S. Shenkman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document