Mechanism of the Production of the Negative Endocochlear DC Potential in the Guinea Pig

1983 ◽  
Vol 91 (4) ◽  
pp. 427-434 ◽  
Author(s):  
Shizuo Komune ◽  
Musan Huangfu ◽  
James B. Snow

Changes in endocochlear DC potential (EP) and potassium ion concentrations in endolymph were measured simultaneously during anoxia or during perfusion of the perilymphatic space with furosemide, 10−2 M, in normal and kanamycin-deafened guinea pigs. The potassium ion conductance (Gk) through the cochlear partitions was calculated. Thirty minutes after the onset of anoxia, the Gk is 22.1 μM/min/mV in normal guinea pigs and 4.8 μM/min/mV in kanamycin-deafened guinea pigs. At that time the EP is-29.5 mV in normal guinea pigs and 1.4 mV in kanamycin-deafened guinea pigs. In the early stage of anoxia the rate of potassium ion concentration decrease in the endolymph per unit time is greater in normal guinea pigs than in kanamycin-deafened guinea pigs. These results suggest a rapid increase in the permeability of potassium ions in the organ of Corti in the early stage of anoxia might produce a large negative potassium ion diffusion potential or negative EP in normal guinea pigs and the failure to develop the negative EP in kanamycin-deafened guinea pigs might be due to the lack of such a rapid increase in the permeability because of the loss of the hair cells.

Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 266
Author(s):  
Nataša Žuržul ◽  
Bjørn Torger Stokke

In the present paper, we describe a potassium sensor based on DNA-aptamer functionalized hydrogel, that is capable of continuous label-free potassium ion (K+) monitoring with potential for in situ application. A hydrogel attached to the end of an optical fiber is designed with di-oligonucleotides grafted to the polymer network that may serve as network junctions in addition to the covalent crosslinks. Specific affinity toward K+ is based on exploiting a particular aptamer that exhibits conformational transition from single-stranded DNA to G-quadruplex formed by the di-oligonucleotide in the presence of K+. Integration of this aptamer into the hydrogel transforms the K+ specific conformational transition to a K+ concentration dependent deswelling of the hydrogel. High-resolution interferometry monitors changes in extent of swelling at 1 Hz and 2 nm resolution for the hydrogel matrix of 50 µm. The developed hydrogel-based biosensor displayed high selectivity for K+ ions in the concentration range up to 10 mM, in the presence of physiological concentrations of Na+. Additionally, the concentration dependent and selective K+ detection demonstrated in the artificial blood buffer environment, both at room and physiological temperatures, suggests substantial potential for practical applications such as monitoring of potassium ion concentration in blood levels in intensive care medicine.


Author(s):  
Marta Stahl ◽  
Ivan Brandslund

AbstractBlood specimens from primary care centres are normally transported to central laboratories by mail. This necessitates centrifugation and separation, especially since the potassium ion concentration in whole blood changes during storage at ambient temperature. Thus, because of the growing awareness of and concern for pre-analytical contributions to the uncertainty of measurements, we investigated 27 components and their stability under controlled temperature conditions from 17 to 23°C. We found that storage of whole blood can be prolonged by up to 8–12h for all components examined, including potassium ions, when stored at 20±0.2°C. We conclude that this opens the possibility for establishing a pick-up service, by which whole blood specimens stored at 20–21°C can be collected at the doctor's office, making centrifugation, separation and mailing superfluous. In addition, the turn-around time from sample drawing to reporting the analytical result would be shortened. After investments in thermostatted boxes and logistics, the system could reduce costs for transporting blood samples from general practice centres to central laboratories.


2009 ◽  
Vol 123 (11) ◽  
pp. 1204-1211 ◽  
Author(s):  
J Morales ◽  
M Garcia ◽  
C Perez ◽  
J V Valverde ◽  
C Lopez-Sanchez ◽  
...  

AbstractObjective:To analyse the possible impact of low and extremely low frequency electromagnetic fields on the outer hairs cells of the organ of Corti, in a guinea pig model.Materials and methods:Electromagnetic fields of 50, 500, 1000, 2000, 4000 and 5000 Hz frequencies and 1.5 µT intensity were generated using a transverse electromagnetic wave guide. Guinea pigs of both sexes, weighing 100–150 g, were used, with no abnormalities on general and otic examination. Total exposure times were: 360 hours for 50, 500 and 1000 Hz; 3300 hours for 2000 Hz; 4820 hours for 4000 Hz; and 6420 hours for 5000 Hz. One control animal was used in each frequency group. The parameters measured by electric response audiometer included: hearing level; waves I–IV latencies; wave I–III interpeak latency; and percentage appearance of waves I–III at 90 and 50 dB sound pressure level intensity.Results:Values for the above parameters did not differ significantly, comparing the control animal and the rest of each group. In addition, no significant differences were found between our findings and those of previous studies of normal guinea pigs.Conclusion:Prolonged exposure to electromagnetic fields of 50 Hz to 5 KHz frequencies and 1.5 µT intensity, produced no functional or morphological alteration in the outer hair cells of the guinea pig organ of Corti.


2021 ◽  
Vol 26 (6) ◽  
pp. 100-106
Author(s):  
Emma Keeble

This article reviews the current literature on osteoarthritis in pet and laboratory guinea pigs. The associated clinical signs, diagnosis and treatment of osteoarthritis in pet guinea pigs will be discussed, with options for analgesia detailed. This condition is thought to be common in pet guinea pigs, even from an early age in some genetic lines, although osteoarthritis often goes undiagnosed in this species until advanced disease is present, posing a major welfare concern. Increasing awareness of this condition in veterinary practitioners should aid early diagnosis in pets and help improve their quality of life. Prevention may be possible using oral protective nutritional supplements to slow down the progression of this disease at an early stage. Lifestyle changes are also discussed for the management of this condition in pet guinea pigs.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 317-324 ◽  
Author(s):  
Sudhir N. Murthy ◽  
John T. Novak

Potassium ions appear to play an important role in determining the nature of activated sludge flocs. Relative to sodium, the concentration of potassium ions in most industrial activated sludge is typically low. Laboratory and field studies were conducted to examine the influence of potassium on activated sludge properties. The concentration of potassium affected the concentration of readily extractable (slime) proteins in the floc and the proteins in the surrounding solution. In laboratory tests, an increase in this cation's concentration beyond nutrient requirements impeded sludge dewatering properties as measured by capillary suction time (CST) and specific resistance to filtration (SRF) and associated with an increase in soluble protein. An increase in effluent total organic carbon and effluent turbidity was observed at higher concentrations of this ion. Conversely, an increase in concentration of potassium ion improved the settling properties of sludge with low equivalent monovalent to divalent cation ratio.


2021 ◽  
Vol 22 (16) ◽  
pp. 8658
Author(s):  
Azin EbrahimAmini ◽  
Shanthini Mylvaganam ◽  
Paolo Bazzigaluppi ◽  
Mohamad Khazaei ◽  
Alexander Velumian ◽  
...  

A normally functioning nervous system requires normal extracellular potassium ion concentration ([K]o). Throughout the nervous system, several processes, including those of an astrocytic nature, are involved in [K]o regulation. In this study we investigated the effect of astrocytic photostimulation on [K]o. We hypothesized that in vivo photostimulation of eNpHR-expressing astrocytes leads to a decreased [K]o. Using optogenetic and electrophysiological techniques we showed that stimulation of eNpHR-expressing astrocytes resulted in a significantly decreased resting [K]o and evoked K responses. The amplitude of the concomitant spreading depolarization-like events also decreased. Our results imply that astrocytic membrane potential modification could be a potential tool for adjusting the [K]o.


1958 ◽  
Vol 36 (3) ◽  
pp. 347-362 ◽  
Author(s):  
E. Riklis ◽  
J. H. Quastel

The rate of absorption of glucose from isolated surviving guinea pig intestine increases with increase of the concentration of glucose in the lumen until a maximum rate is obtained. The relation between absorption rate of glucose and initial glucose concentration conforms to an equation of the Michaelis–Menten type. The apparent Km(half saturation concentration) is 7 × 10−3M. Increase of the concentration of potassium ions in the Ringer–bicarbonate solution bathing the intestine leads to an increase of the rate of glucose absorption, this being most marked with 15.6 meq./liter K+and 14 mM glucose. No such stimulating action of potassium ions is observed on glucose absorption under anaerobic conditions. The effect of increased potassium ion concentration is to accelerate the rate of transport found with low concentrations of glucose to the maximum value found with high concentrations of the sugar. Sodium ions must be present for glucose absorption to take place and omission of magnesium ions from a Ringer–bicarbonate solution, containing 15.6 meq./liter K+, brings about a decreased rate of active glucose transport. Magnesium ions are necessary for the stimulated rate of glucose absorption obtained in the presence of potassium ions. The presence of ammonium ions decreases the rate of glucose absorption. Potassium ions may be effectively replaced by rubidium ions for stimulation of glucose transport. Cesium ions do not activate. The proportion of glucose to fructose appearing in the serosal solution, when fructose is absorbed from the mucosal solution, depends on the concentration of fructose present. The proportion may be as high as 9:1 with low (7 mM) fructose concentrations; it decreases with increasing fructose concentrations. The active transport of fructose, as demonstrated by the conversion of fructose in the isolated surviving guinea pig intestine, is enhanced by the presence of potassium ions (15.6 meq./liter). The rate of transport of fructose itself is unaffected by potassium. Using radioactive glucose and fructose, it is shown that the total amount of sugar transferred through the intestine as estimated by the radioactivity appearing in the serosal solution is approximately that calculated from chemical analyses. Potassium ions have no activating action on the transport of sugars such as sorbose, mannose, and D-glucosamine, but have a marked effect on galactose transport. The results support the conclusion that potassium ions do not influence active transport of glucose, fructose, and galactose by a change of intestinal permeability to these sugars, but do so by affecting a specific phase involved in the mechanism of active transport of sugars. The presence of L-glutamine stimulates active transport of glucose, whereas that of L-glutamate tends to diminish it.


1955 ◽  
Vol 33 (1) ◽  
pp. 687-694 ◽  
Author(s):  
D. W. Clarke

The amounts of glucose taken from a medium, and the amounts of glycogen synthesized, by rat hemidiaphragms were studied under various conditions. High concentrations of potassium ion inhibited the glucose uptake and there was also a reduced net glycogen synthesis. Glycogen breakdown was probably not increased by high potassium ion concentration. The effect of potassium was most marked when conditions were such that one would ordinarily expect a considerable glucose uptake or glycogen synthesis. The action of insulin was not peculiarly susceptible to potassium ion inhibition.


Sign in / Sign up

Export Citation Format

Share Document