Efficacy of whole-body vibration on balance control, postural stability, and mobility after thermal burn injuries: A prospective randomized controlled trial

2021 ◽  
pp. 026921552110208
Author(s):  
Nabil Mahmoud Abdel-Aal ◽  
Nesma M Allam ◽  
Hadaya Mosaad Eladl

Objective: To investigate the additive effects of whole-body vibration (WBV) training to the traditional physical therapy program (TPTP) on balance control, postural stability, and mobility after thermal burn injuries. Design: A single-blinded, randomized controlled study. Setting: Outpatient physical therapy setting. Participants: Forty participants, 20–45 years old, with deep second-degree thermal burn involving the lower limbs and trunk, with 35%–40% total body service area, were randomly allocated either into the study group or the control group. Intervention: The study group received WBV plus TPTP while the control group received the TPTP only. Interventions were applied three sessions a week for eight weeks. Outcome measures: Anteroposterior stability index (APSI), mediolateral stability index (MLSI), overall stability index (OSI), timed-up and go (TUG), and Berg balance scale (BBS) were measured at baseline and after eight weeks of interventions. Results: There were statistically significant differences in APSI, MLSI, OSI, BBS, and TUG in favor of the WBV group after eight weeks of intervention ( P < 0.001). After eight weeks of intervention, the mean (SD) for APSI, MLSI, OSI, BBS, and TUG scores were 1.87 ± 0.51, 41.36 ± 0.18, 1.95 ± 0.56, 47.2 ± 6.12, and 8.15 ± 1.05 seconds in the WBV group, and 2.41 ± 0.71, 2.21 ± 0.54, 2.68 ± 0.73, 40.65 ± 4.7, and 10.95 ± 2.44 seconds in the control group, respectively. Conclusions: The whole-body vibration training combined with the TPTP was more beneficial in improving APS, MLS, OSI, TUG, and BBS than TPTP alone. It might be considered a useful adjunctive therapy in treating patients with healed wounds with a deep second-degree burn of the trunk and lower limbs.

2021 ◽  
Vol 10 (18) ◽  
pp. 4273
Author(s):  
Małgorzata Domagalska-Szopa ◽  
Andrzej Szopa ◽  
Andrzej Siwiec ◽  
Ilona Kwiecień-Czerwieniec ◽  
Lutz Schreiber ◽  
...  

The objective of the present study was to determine the effectiveness of a three-week Whole-Body Vibration (WBV) training on the vascular blood flow of the lower limbs in children with myelomeningocele. The secondary goal was to evaluate the effect of WBV on the ROM of lower limb joints in this population. A total of 30 children with MMC (7–16 years old) were enrolled in the study. Children were randomly allocated to two groups of equal numbers, using an envelope code. The experimental group underwent a 3-week WBV training, while the control group received a 3-week conventional physiotherapy (PT) program. The examination consisted of two parts: (1) Doppler USG examination of the lower limb vascular blood flow; (2) evaluation of ROM. The results obtained revealed three main findings. First, WBV training effectively improved blood flow by increasing flow velocities in all tested arteries, while the impact of the PT program was limited to a single parameter. Second, WBV training effectively improved vascular resistance in arteries of the lower legs, while the PT program did not achieve any significant differences. Third, both types of treatment intervention significantly improved ROM in all joints of the lower limbs in MMC participants.


Author(s):  
José Antonio Mingorance ◽  
Pedro Montoya ◽  
José García Vivas Miranda ◽  
Inmaculada Riquelme

Whole body vibration has been proven to improve the health status of patients with fibromyalgia, providing an activation of the neuromuscular spindles, which are responsible for muscle contraction. The present study aimed to compare the effectiveness of two types of whole body vibrating platforms (vertical and rotational) during a 12-week training program. Sixty fibromyalgia patients (90% were women) were randomly assigned to one of the following groups: group A (n = 20), who performed the vibration training with a vertical platform; group B (n = 20), who did rotational platform training; or a control group C (n = 20), who did not do any training. Sensitivity measures (pressure pain and vibration thresholds), quality of life (Quality of Life Index), motor function tasks (Berg Scale, six-minute walking test, isometric back muscle strength), and static and dynamic balance (Romberg test and gait analysis) were assessed before, immediately after, and three months after the therapy program. Although both types of vibration appeared to have beneficial effects with respect to the control group, the training was more effective with the rotational than with vertical platform in some parameters, such as vibration thresholds (p < 0.001), motor function tasks (p < 0.001), mediolateral sway (p < 0.001), and gait speed (p < 0.05). Nevertheless, improvements disappeared in the follow-up in both types of vibration. Our study points out greater benefits with the use of rotational rather than vertical whole body vibration. The use of the rotational modality is recommended in the standard therapy program for patients with fibromyalgia. Due to the fact that the positive effects of both types of vibration disappeared during the follow-up, continuous or intermittent use is recommended.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Rania G. Hegazy ◽  
Amr Almaz Abdel-aziem ◽  
Eman I. El Hadidy ◽  
Yosra M. Ali

Abstract Background Hemiplegic cerebral palsy (CP) enormously affects the quadriceps and hamstring muscles. It causes weakness in the affected lower-extremity muscles in addition to muscle imbalance and inadequate power production, especially in the ankle plantar-flexor and knee extensor muscles. It also causes anomalous delayed myoelectrical action of the medial hamstring. A whole-body vibration (WBV) exercise can diminish muscle spasticity and improve walking speed, muscle strength, and gross motor function without causing unfavorable impacts in adults suffering from CP. Thus, the aim of this study is to investigate the impacts of WBV training associated with conventional physical therapy on the quadriceps and hamstring muscle strength, endurance, and power in children with hemiparetic CP. Results The post-intervention values of the quadriceps and hamstring muscle force, endurance, and power were significantly higher than the pre-intervention values for both groups (p = 0.001). The post-intervention values of the study group were significantly higher than the control group (quadriceps force, p = 0.015; hamstring force, p = 0.030; endurance, p = 0.025; power, p = 0.014). Conclusion The 8 weeks of WBV training that was added to traditional physical therapy was more successful in improving the quadriceps and hamstring muscle strength, endurance, and power in children with hemiparetic CP when compared to traditional physical therapy alone.


2013 ◽  
Vol 109 (11) ◽  
pp. 2705-2711 ◽  
Author(s):  
M. Bączyk ◽  
A. Hałuszka ◽  
W. Mrówczyński ◽  
J. Celichowski ◽  
P. Krutki

The study aimed at determining the influence of a whole body vibration (WBV) on electrophysiological properties of spinal motoneurons. The WBV training was performed on adult male Wistar rats, 5 days a week, for 5 wk, and each daily session consisted of four 30-s runs of vibration at 50 Hz. Motoneuron properties were investigated intracellularly during experiments on deeply anesthetized animals. The experimental group subjected to the WBV consisted of seven rats, and the control group of nine rats. The WBV treatment induced no significant changes in the passive membrane properties of motoneurons. However, the WBV-evoked adaptations in excitability and firing properties were observed, and they were limited to fast-type motoneurons. A significant decrease in rheobase current and a decrease in the minimum and the maximum currents required to evoke steady-state firing in motoneurons were revealed. These changes resulted in a leftward shift of the frequency-current relationship, combined with an increase in slope of this curve. The functional relevance of the described adaptive changes is the ability of fast motoneurons of rats subjected to the WBV to produce series of action potentials at higher frequencies in a response to the same intensity of activation. Previous studies proved that WBV induces changes in the contractile parameters predominantly of fast motor units (MUs). The data obtained in our experiment shed a new light to possible explanation of these results, suggesting that neuronal factors also play a substantial role in MU adaptation.


2018 ◽  
Vol 4 (1) ◽  
pp. 56-66
Author(s):  
M. Cvetkovic ◽  
J. Santos Baptista ◽  
M. A. Pires Vaz

The whole-body vibration occurs in many occupational activities, promoting discomfort in the working environment and inducing a variety of psycho – physical changes where consequences as a permanent dysfunction of certain parts of the organism may occur. The main goal of this short systematic review is finding the articles with the most reliable results relating whole-body vibrations to buses and, to compare them with the results of drivers’ lower limbs musculoskeletal disease which occurs as a consequence of many year exposure. PRISMA Statement Methodology was used and thereby 27 Scientific Journals and 25 Index - Database were searched through where 3996 works were found, of which 24 were included in this paper. As a leading standard for analysis of the whole-body vibration the ISO 2631 – 1 is used, while in some papers as an additional standard the ISO 2631-5 is also used for the sake of better understanding the vibrations. Furthermore, the European Directive 2002/44 / EC is included where a daily action exposure to the whole-body vibrations is exactly deter-mined. All the results presented in the paper were compared with the aforesaid standards. After having searched the databases, papers that deal with research of the impact of the vibration on the driver’s lower limbs did not contain any information’s on the described problem.


2015 ◽  
Vol 32 (3) ◽  
pp. 235-241 ◽  
Author(s):  
George Dallas ◽  
Giorgos Paradisis ◽  
Paschalis Kirialanis ◽  
Vassilis Mellos ◽  
Polikseni Argitaki ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
P. S. C. Gomes ◽  
M. O. Campos ◽  
L. F. Oliveira ◽  
R. G. T. Mello ◽  
I. A. Fernandes

Objective. This study investigated the acute residual effects induced by different frequencies of whole-body vibration (WBV) on postural control of elderly women. Design. Thirty physically active elderly women (67±5 years) were randomly divided into three groups: two experimental groups (high WBV frequency: 45 Hz and 4 mm amplitude, n=10; low WBV frequency: 30 Hz and 4 mm amplitude, n=10) and one control group (n=10), with no treatment. The participants were first subjected to stabilometry tests and were then guided through three sets of isometric partial squats for 60 s while the WBV stimulation was applied. The control group was subjected to the same conditions but without the WBV stimulation. The participants were again subjected to body balance tests immediately following the end of the intervention period and again at 8, 16, and 24 min. To measure body sway control, three 60 s tests were performed at 10 s intervals for each of the following experimental conditions: (1) eyes opened and (2) eyes closed. The following variables were investigated: the average velocity of the displacement of the centre of pressure in the anterior-posterior and medial-lateral planes as well as in the elliptical area. Results. A 3 (condition) × 5 (test) two-way repeated-measures ANOVA did not identify significant differences in the stabilometric variables, regardless of group, time, or experimental condition. Conclusions. The effect of WBV, regardless of the stimulation frequency, did not have a significant effect immediately after or up to 24 minutes after vibration cessation, on the variables involved in the control of postural stability in physically active elderly women.


2018 ◽  
Vol 53 (4) ◽  
pp. 355-363 ◽  
Author(s):  
Rafael Sierra-Guzmán ◽  
Fernando Jiménez-Diaz ◽  
Carlos Ramírez ◽  
Paula Esteban ◽  
Javier Abián-Vicén

Context:  Deficits in the propioceptive system of the ankle contribute to chronic ankle instability (CAI). Recently, whole-body–vibration (WBV) training has been introduced as a preventive and rehabilitative tool. Objective:  To evaluate how a 6-week WBV training program on an unstable surface affected balance and body composition in recreational athletes with CAI. Design:  Randomized controlled clinical trial. Setting:  Research laboratory. Patients or Other Participants:  Fifty recreational athletes with self-reported CAI were randomly assigned to a vibration (VIB), nonvibration (NVIB), or control group. Intervention(s):  The VIB and NVIB groups performed unilateral balance training on a BOSU 3 times weekly for 6 weeks. The VIB group trained on a vibration platform, and the NVIB group trained on the floor. Main Outcome Measure(s):  We assessed balance using the Biodex Balance System and the Star Excursion Balance Test (SEBT). Body composition was measured by dual-energy x-ray absorptiometry. Results:  After 6 weeks of training, improvements on the Biodex Balance System occurred only on the Overall Stability Index (P = .01) and Anterior-Posterior Stability Index (P = .03) in the VIB group. We observed better performance in the medial (P = .008) and posterolateral (P = .04) directions and composite score of the SEBT in the VIB group (P = .01) and in the medial (P &lt; .001), posteromedial (P = .002), and posterolateral (P = .03) directions and composite score of the SEBT in the NVIB group (P &lt; .001). No changes in body composition were found for any of the groups. Conclusions:  Only the VIB group showed improvements on the Biodex Balance System, whereas the VIB and NVIB groups displayed better performance on the SEBT.


Medicina ◽  
2020 ◽  
Vol 56 (9) ◽  
pp. 457
Author(s):  
Milad Etemadi Sh ◽  
Nan-Chen Hsieh ◽  
Seyed Shahin Movahed Mohammadi ◽  
Shahrooz Momeni ◽  
Seyed Mohammad Razavi ◽  
...  

Background and Objectives: Mechanical stimulation can improve the structural properties of the fracture site and induce the differentiation of different cell types for bone regeneration. This study aimed to compare the effect of low-intensity pulsed ultrasound stimulation (LIPUS) versus whole body vibration (WBV) on healing of mandibular bone defects. Materials and Methods: A mandibular defect was created in 66 rats. The rats were randomly divided into two groups of rats. Each group was subdivided randomly by three groups (n = 11) as follows: (I) control group, (II) treatment with LIPUS, and (III) treatment with WBV. The radiographic changes in bone density, the ratio of lamellar bone to the entire bone volume, the ratio of the newly formed bone to the connective tissue and inflammation grade were evaluated after 1 and 2 months. Results: LIPUS significantly increased the radiographic bone density change compared to the control group at the first and second month postoperatively (p < 0.01). WBV only significantly increased the bone density compared to the control group at the second month after the surgery (p < 0.01). Conclusions: Application of LIPUS and WBV may enhance the regeneration of mandibular bone defects in rats. Although LIPUS and WBV are effective in mandibular bone healing, the effects of LIPUS are faster and greater than WBV.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Angel Yañez-Álvarez ◽  
Beatriz Bermúdez-Pulgarín ◽  
Sergio Hernández-Sánchez ◽  
Manuel Albornoz-Cabello

Abstract Background Patellofemoral pain is a prevalent condition in the general population, especially in women, and produces functional impairment in patients. Therapeutic exercise is considered an essential part of the conservative management. The use of vibration platforms may help improve strength and function and reduce pain in patients with knee disorders. The aim of this investigation was to determine the effects of adding whole body vibration (vertical, vibration frequency of 40 Hz, with an amplitude from 2 to 4 mm) to an exercise protocol for pain and disability in adults with patellofemoral pain. Methods A randomised clinical trial was designed, where 50 subjects were randomly distributed into either an exercise group plus whole body vibration or a control group. Pain, knee function (self-reported questionnaire) and range of motion and lower limb functionality were assessed at baseline and at 4 weeks. The experimental group performed 12 supervised sessions of hip, knee and core strengthening exercises on a vibration platform 3 times per week during 4 weeks. The control group followed the same protocol but without vibration stimuli. Differences in outcome measures were explored using an analysis of the variance of 2 repeated measures. Effect sizes were estimated using Square Eta (η2). Significant level was set al P < 0.05. Results Statistically significant differences were found after intervention in favour of the experimental group in the between-groups comparison and in the interaction of the experimental group before and after treatment in terms of pain perception (P = 0.000; η2 = 0.63) and function outcomes scores (P = 0.000; η2 0.39 and 0.51 for lower limb functional scale and Kujala scores respectively). Conclusion A 4-week whole body vibration exercise programme reduces pain level intensity and improves lower limb functionality in patellofemoral pain patients and is more effective than exercise alone in improving pain and function in the short-term. Trial registration ClinicalTrials.gov (NCT04031248). This study was prospectively registered on the 24th July, 2019.


Sign in / Sign up

Export Citation Format

Share Document