Learning movement primitive libraries through probabilistic segmentation

2017 ◽  
Vol 36 (8) ◽  
pp. 879-894 ◽  
Author(s):  
Rudolf Lioutikov ◽  
Gerhard Neumann ◽  
Guilherme Maeda ◽  
Jan Peters

Movement primitives are a well-established approach for encoding and executing movements. While the primitives themselves have been extensively researched, the concept of movement primitive libraries has not received similar attention. Libraries of movement primitives represent the skill set of an agent. Primitives can be queried and sequenced in order to solve specific tasks. The goal of this work is to segment unlabeled demonstrations into a representative set of primitives. Our proposed method differs from current approaches by taking advantage of the often neglected, mutual dependencies between the segments contained in the demonstrations and the primitives to be encoded. By exploiting this mutual dependency, we show that we can improve both the segmentation and the movement primitive library. Based on probabilistic inference our novel approach segments the demonstrations while learning a probabilistic representation of movement primitives. We demonstrate our method on two real robot applications. First, the robot segments sequences of different letters into a library, explaining the observed trajectories. Second, the robot segments demonstrations of a chair assembly task into a movement primitive library. The library is subsequently used to assemble the chair in an order not present in the demonstrations.

2017 ◽  
Vol 2 (2) ◽  
pp. 977-984 ◽  
Author(s):  
Debora Clever ◽  
Monika Harant ◽  
Katja Mombaur ◽  
Maximilien Naveau ◽  
Olivier Stasse ◽  
...  

2020 ◽  
Vol 2 (1) ◽  
pp. 58-80
Author(s):  
Frank Hoeller

This article introduces a novel approach to the online complete- coverage path planning (CCPP) problem that is specically tailored to the needs of skid-steer tracked robots. In contrast to most of the current state-of-the-art algorithms for this task, the proposed algorithm reduces the number of turning maneuvers, which are responsible for a large part of the robot's energy consumption. Nevertheless, the approach still keeps the total distance traveled at a competitive level. The algorithm operates on a grid-based environment representation and uses a 3x3 prioritization matrix for local navigation decisions. This matrix prioritizes cardinal di- rections leading to a preference for straight motions. In case no progress can be achieved based on a local decision, global path planning is used to choose a path to the closest known unvisited cell, thereby guaranteeing completeness of the approach. In an extensive evaluation using simulation experiments, we show that the new algorithm indeed generates competi- tively short paths with largely reduced turning costs, compared to other state-of-the-art CCPP algorithms. We also illustrate its performance on a real robot.


2014 ◽  
Vol 1014 ◽  
pp. 319-322
Author(s):  
Ming Wu ◽  
Lin Lin Li ◽  
Cheng Jian Li ◽  
Hong Qiao Wang ◽  
Zhen Hua Wei

This paper presents a novel approach for simultaneous localization, mapping (SLAM) and detection of moving object based on information fusion. We use different information sources, such as laser range scanner, and monocular camera, to improve the ability of distinction between object and background environment. The approach improves the accuracy of SLAM in complex environment, reduces the interference caused by objects, and enhances the practical utility of traditional methods of SLAM. Moreover, the approach expands fields of both research and application of SLAM in combination with target tracking method. Results in real robot experiments show the effectiveness of our method.


Robotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 45
Author(s):  
Simon Manschitz ◽  
Michael Gienger ◽  
Jens Kober ◽  
Jan Peters

Learning skills from kinesthetic demonstrations is a promising way of minimizing the gap between human manipulation abilities and those of robots. We propose an approach to learn sequential force interaction skills from such demonstrations. The demonstrations are decomposed into a set of movement primitives by inferring the underlying sequential structure of the task. The decomposition is based on a novel probability distribution which we call Directional Normal Distribution. The distribution allows infering the movement primitive’s composition, i.e., its coordinate frames, control variables and target coordinates from the demonstrations. In addition, it permits determining an appropriate number of movement primitives for a task via model selection. After finding the task’s composition, the system learns to sequence the resulting movement primitives in order to be able to reproduce the task on a real robot. We evaluate the approach on three different tasks, unscrewing a light bulb, box stacking and box flipping. All tasks are kinesthetically demonstrated and then reproduced on a Barrett WAM robot.


Author(s):  
Dylan Festa ◽  
Amir Aschner ◽  
Aida Davila ◽  
Adam Kohn ◽  
Ruben Coen-Cagli

AbstractNeuronal activity in sensory cortex fluctuates over time and across repetitions of the same input. This variability is often considered detrimental to neural coding. The theory of neural sampling proposes instead that variability encodes the uncertainty of perceptual inferences. In primary visual cortex (V1), modulation of variability by sensory and non-sensory factors supports this view. However, it is unknown whether V1 variability reflects the statistical structure of visual inputs, as would be required for inferences correctly tuned to the statistics of the natural environment. Here we combine analysis of image statistics and recordings in macaque V1 to show that probabilistic inference tuned to natural image statistics explains Poisson-like variability, and the modulation of V1 activity and variability by spatial context in images. Our results show that the properties of a basic aspect of cortical responses—their variability—can be explained by a probabilistic representation tuned to naturalistic inputs.


2006 ◽  
Vol 20 (19) ◽  
pp. 2770-2778 ◽  
Author(s):  
CARLO PRESILLA ◽  
MASSIMO OSTILLI

We review a novel approach to evaluate the ground-state properties of many-body lattice systems based on an exact probabilistic representation of the dynamics and its long time approximation via a central limit theorem. The choice of the asymptotic density probability used in the calculation is discussed in detail.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dylan Festa ◽  
Amir Aschner ◽  
Aida Davila ◽  
Adam Kohn ◽  
Ruben Coen-Cagli

AbstractNeuronal activity in sensory cortex fluctuates over time and across repetitions of the same input. This variability is often considered detrimental to neural coding. The theory of neural sampling proposes instead that variability encodes the uncertainty of perceptual inferences. In primary visual cortex (V1), modulation of variability by sensory and non-sensory factors supports this view. However, it is unknown whether V1 variability reflects the statistical structure of visual inputs, as would be required for inferences correctly tuned to the statistics of the natural environment. Here we combine analysis of image statistics and recordings in macaque V1 to show that probabilistic inference tuned to natural image statistics explains the widely observed dependence between spike count variance and mean, and the modulation of V1 activity and variability by spatial context in images. Our results show that the properties of a basic aspect of cortical responses—their variability—can be explained by a probabilistic representation tuned to naturalistic inputs.


2019 ◽  
Vol 476 (24) ◽  
pp. 3705-3719 ◽  
Author(s):  
Avani Vyas ◽  
Umamaheswar Duvvuri ◽  
Kirill Kiselyov

Platinum-containing drugs such as cisplatin and carboplatin are routinely used for the treatment of many solid tumors including squamous cell carcinoma of the head and neck (SCCHN). However, SCCHN resistance to platinum compounds is well documented. The resistance to platinum has been linked to the activity of divalent transporter ATP7B, which pumps platinum from the cytoplasm into lysosomes, decreasing its concentration in the cytoplasm. Several cancer models show increased expression of ATP7B; however, the reason for such an increase is not known. Here we show a strong positive correlation between mRNA levels of TMEM16A and ATP7B in human SCCHN tumors. TMEM16A overexpression and depletion in SCCHN cell lines caused parallel changes in the ATP7B mRNA levels. The ATP7B increase in TMEM16A-overexpressing cells was reversed by suppression of NADPH oxidase 2 (NOX2), by the antioxidant N-Acetyl-Cysteine (NAC) and by copper chelation using cuprizone and bathocuproine sulphonate (BCS). Pretreatment with either chelator significantly increased cisplatin's sensitivity, particularly in the context of TMEM16A overexpression. We propose that increased oxidative stress in TMEM16A-overexpressing cells liberates the chelated copper in the cytoplasm, leading to the transcriptional activation of ATP7B expression. This, in turn, decreases the efficacy of platinum compounds by promoting their vesicular sequestration. We think that such a new explanation of the mechanism of SCCHN tumors’ platinum resistance identifies novel approach to treating these tumors.


2020 ◽  
Vol 51 (3) ◽  
pp. 544-560 ◽  
Author(s):  
Kimberly A. Murphy ◽  
Emily A. Diehm

Purpose Morphological interventions promote gains in morphological knowledge and in other oral and written language skills (e.g., phonological awareness, vocabulary, reading, and spelling), yet we have a limited understanding of critical intervention features. In this clinical focus article, we describe a relatively novel approach to teaching morphology that considers its role as the key organizing principle of English orthography. We also present a clinical example of such an intervention delivered during a summer camp at a university speech and hearing clinic. Method Graduate speech-language pathology students provided a 6-week morphology-focused orthographic intervention to children in first through fourth grade ( n = 10) who demonstrated word-level reading and spelling difficulties. The intervention focused children's attention on morphological families, teaching how morphology is interrelated with phonology and etymology in English orthography. Results Comparing pre- and posttest scores, children demonstrated improvement in reading and/or spelling abilities, with the largest gains observed in spelling affixes within polymorphemic words. Children and their caregivers reacted positively to the intervention. Therefore, data from the camp offer preliminary support for teaching morphology within the context of written words, and the intervention appears to be a feasible approach for simultaneously increasing morphological knowledge, reading, and spelling. Conclusion Children with word-level reading and spelling difficulties may benefit from a morphology-focused orthographic intervention, such as the one described here. Research on the approach is warranted, and clinicians are encouraged to explore its possible effectiveness in their practice. Supplemental Material https://doi.org/10.23641/asha.12290687


Sign in / Sign up

Export Citation Format

Share Document