LEO: Liquid Exploration Online
This article introduces a novel approach to the online complete- coverage path planning (CCPP) problem that is specically tailored to the needs of skid-steer tracked robots. In contrast to most of the current state-of-the-art algorithms for this task, the proposed algorithm reduces the number of turning maneuvers, which are responsible for a large part of the robot's energy consumption. Nevertheless, the approach still keeps the total distance traveled at a competitive level. The algorithm operates on a grid-based environment representation and uses a 3x3 prioritization matrix for local navigation decisions. This matrix prioritizes cardinal di- rections leading to a preference for straight motions. In case no progress can be achieved based on a local decision, global path planning is used to choose a path to the closest known unvisited cell, thereby guaranteeing completeness of the approach. In an extensive evaluation using simulation experiments, we show that the new algorithm indeed generates competi- tively short paths with largely reduced turning costs, compared to other state-of-the-art CCPP algorithms. We also illustrate its performance on a real robot.