A qualitative and quantitative assessment of simultaneous strain, shear wave, and point shear wave elastography to distinguish malignant and benign breast lesions

2020 ◽  
pp. 028418512096142
Author(s):  
Yasemin Altıntas ◽  
Mehmet Bayrak ◽  
Ömer Alabaz ◽  
Medih Celiktas

Background Ultrasound (US) elastography has become a routine instrument in ultrasonographic diagnosis that measures the consistency and stiffness of tissues. Purpose To distinguish benign and malignant breast masses using a single US system by comparing the diagnostic parameters of three kinds of breast elastography simultaneously added to B-mode ultrasonography. Material and Methods A total of 163 breast lesions in 159 consecutive women who underwent US-guided core needle biopsy were included in this prospective study. Before the biopsy, the lesions were examined with B-mode ultrasonography and strain (SE), shear wave (SWE), and point shear wave (STQ) elastography. The strain ratio was computed and the Tsukuba score determined. The mean elasticity values using SWE and STQ were computed and converted to Young’s modulus E (kPa). Results All SE, SWE, and STQ parameters showed similar diagnostic performance. The SE score, SE ratio, SWEmean, SWEmax, STQmean, and STQmax yielded higher specificity than B-mode US alone to differentiate benign and malignant masses. The sensitivity of B-mode US, SWE, and STQ was slightly higher than that of the SE score and SE ratio. The SE score, SE ratio, SWEmean, SWEmax, STQmean, and STQmax had significantly higher positive predictive value and diagnostic accuracy than B-mode US alone. The area under the curve for each of these elastography methods in differentiating benign and malignant breast lesions was 0.93, 0.93, 0.98, 0.97, 0.98, and 0.96, respectively; P<0.001 for all measurements. Conclusion SE (ratio and score), SWE, and STQ had higher diagnostic performance individually than B-mode US alone in distinguishing between malignant and benign breast masses.

Author(s):  
Roaa M. A. Shehata ◽  
Mostafa A. M. El-Sharkawy ◽  
Omar M. Mahmoud ◽  
Hosam M. Kamel

Abstract Background Breast cancer is the most common life-threatening cancer in women worldwide. A high number of women are going through biopsy procedures for characterization of breast masses every day and yet 75% of the pathological results prove these masses to be benign. Ultrasound (US) elastography is a non-invasive technique that measures tissue stiffness. It is convenient for differentiating benign from malignant breast tumors. Our study aims to evaluate the role of qualitative ultrasound elastography scoring (ES), quantitative mass strain ratio (SR), and shear wave elasticity ratio (SWER) in differentiation between benign and malignant breast lesions. Results Among 51 female patients with 77 histopathologically proved breast lesions, 57 breast masses were malignant and 20 were benign. All patients were examined by B-mode ultrasound then strain and shear wave elastographic examinations using ultrasound machine (Logiq E9, GE Medical Systems) with 8.5–12 MHz high-frequency probes. Our study showed that ES best cut-off point > 3 with sensitivity, specificity, PPV, NPP, accuracy was 94.7%, 85%, 94.7%, 85%, 90.9%, respectively, and AUC = 0.926 at P < 0.001, mass SR the best cut-off point > 4.6 with sensitivity, specificity, PPV, NPP, accuracy was 96.5%, 80%, 93.2%, 88.9%, 92.2%, respectively, and AUC = 0.860 at P < 0.001, SWER the best cut-off value > 4.9 with sensitivity, specificity, PPV, NPP and accuracy was 91.2%, 80%, 92.9%, 76.2%, 93.5%, respectively, and AUC = 0.890 at P < 0.001. The mean mass strain ratio for malignant lesions is 10.1 ± 3.7 SD and for solid benign lesions 4.7 ± 4.3 SD (p value 0.001). The mean shear wave elasticity ratio for malignant lesions is 10.6 ± 5.4 SD and for benign (solid and cystic) lesions 3.6 ± 4.2 SD. Using ROC curve and Youden index, the difference in diagnostic performance between ES, SR and SWER was not significant in differentiation between benign and malignant breast lesions and also was non-significant difference when comparing them with conventional US alone. Conclusion ES, SR, and SWER have a high diagnostic performance in differentiating malignant from benign breast lesions with no statistically significant difference between them.


Author(s):  
Vito Cantisani ◽  
Emanuele David ◽  
Richard G. Barr ◽  
Maija Radzina ◽  
Valeria de Soccio ◽  
...  

Abstract Purpose To evaluate the diagnostic performance of strain elastography (SE) and 2 D shear wave elastography (SWE) and SE/SWE combination in comparison with conventional multiparametric ultrasound (US) with respect to improving BI-RADS classification results and differentiating benign and malignant breast lesions using a qualitative and quantitative assessment. Materials and Methods In this prospective study, 130 histologically proven breast masses were evaluated with baseline US, color Doppler ultrasound (CDUS), SE and SWE (Toshiba Aplio 500 with a 7–15 MHz wide-band linear transducer). Each lesion was classified according to the BIRADS lexicon by evaluating the size, the B-mode and color Doppler features, the SE qualitative (point color scale) and SE semi-quantitative (strain ratio) methods, and quantitative SWE. Histological results were compared with BIRADS, strain ratio (SR) and shear wave elastography (SWE) all performed by one investigator blinded to the clinical examination and mammographic results at the time of the US examination. The area under the ROC curve (AUC) was calculated to evaluate the diagnostic performance of B-mode US, SE, SWE, and their combination. Results Histological examination revealed 47 benign and 83 malignant breast lesions. The accuracy of SR was statistically significantly higher than SWE (sensitivity, specificity and AUC were 89.2 %, 76.6 % and 0.83 for SR and 72.3 %, 66.0 % and 0.69 for SWE, respectively, p = 0.003) but not higher than B-mode US (B-mode US sensitivity, specificity and AUC were 85.5 %, 78.8 %, 0.821, respectively, p = 1.000). Conclusion Our experience suggests that conventional US in combination with both SE and SWE is a valid tool that can be useful in the clinical setting, can improve BIRADS category assessment and may help in the differentiation of benign from malignant breast lesions, with SE having higher accuracy than SWE.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hui Yang ◽  
Yongyuan Xu ◽  
Yanan Zhao ◽  
Jing Yin ◽  
Zhiyi Chen ◽  
...  

Abstract Background Elastography is a promising way to evaluate tissue differences regarding stiffness, and the stiffness of the malignant breast lesions increased at the lesion margin. However, there is a lack of data on the value of the shear wave elastography (SWE) parameters of the surrounding tissue (shell) of different diameter on the diagnosis of benign and malignant breast lesions. Therefore, the purpose of our study was to evaluate the diagnostic performance of shell elasticity in the diagnosis of benign and malignant breast lesions using SWE. Methods Between September 2016 and June 2017, women with breast lesions underwent both conventional ultrasound (US) and SWE. Elastic values of the lesions peripheral tissue were determined according to the shell size, which was automatically drawn along the edge of the lesion using the following software guidelines: (1): 1 mm; (2): 2 mm; and (3): 3 mm. Quantitative elastographic features of the inner lesions and shell, including the elasticity mean (Emean), elasticity maximum (Emax), and elasticity minimum (Emin), were calculated using an online-available software. The receiver operating characteristic curves (ROCs) of the elastographic features was analyzed to assess the diagnostic performance, and the area under curve (AUC) of each elastographic feature was obtained. Logistic regression analysis was used to predict significant factors of malignancy, permitting the design of predictive models. Results This prospective study included 63 breast lesions of 63 women. Of the 63 lesions, 33 were malignant and 30 were benign. The diagnostic performance of Emax-3shell was the highest (AUC = 0.76) with a sensitivity of 60.6% and a specificity of 83.3%. According to stepwise logistic regression analysis, the Emax-3shell and the Emin-3shell were significant predictors of malignancy (p < 0.05). The AUC of the predictive equation was 0.86. Conclusions SWE features, particularly the combination of Emax-3shell and Emin-3shell can improve the diagnosis of breast lesions.


2021 ◽  
pp. 48-50
Author(s):  
Ashok Kumar Verma ◽  
Rashmi Rashmi ◽  
Rakesh Kumar Verma ◽  
Mahendra Kumar Pandey

Introduction: India is experiencing an unprecedented rise in the number of breast cancer cases across all sections of society. Breast cancer is now the most common malignancy in women and the second leading cause of cancer- related mortality. Breast cancer is quite easily and effectively treated, provided it is detected in it's early stages. There is a drastic drop in the survival rates when women present with advanced stage of breast cancer, regardless of the setting. Unfortunately, women in resource-poor and developing countries, like India, generally present at a later stage of disease than women elsewhere, partly due to the absence of effective awareness programs and partly due to the lack of proper mass screening programs Aims And Objectives: The diagnostic performance of elastography in differentiating benign from malignant breast lesions. To assess whether elastography has the potential to reduce the need for breast biopsy /FNAC. Cut off value of Strain Ratio for benign versus malignant breast lesions. Further characterize BI-RADS 3 lesions using elastography Materials And Methods: The study was approved by the GSVM MEDICAL COLLEGE AND LLR HOSPITAL Ethics Committee. All patients that presented to the Radiology and Imaging Department of LLR HOSPITAL for diagnostic work up for breast pathology were included in the study. After obtaining a written and signed informed consent from all patients, they were subjected to conventional B-Mode ultrasonography followed by elastography. All diagnostic breast imaging was done with Samsung RS80A ultrasound machine using linear array transducer of frequency 5-12MHz.Observations & Results: The elastography patterns for each lesion were assessed and documented in color scale. Color images were constructed automatically and displayed as a color-overlay on the B-mode image. The color pattern of each lesion was then evaluated on a scale of 1-5 according to the Tsukuba elasticity scoring system. Conclusion: Strain Ratio cutoff of 3.3 is a sensitive parameter to differentiate benign and malignant breast lesions. Elastography is a specic test for differentiating benign and malignant breast lesions. The combined use of elasticity score, strain ratio and B- Mode sonographyincreases the diagnostic performance in distinguishing benign from malignant breast masses.


2017 ◽  
Vol 59 (7) ◽  
pp. 789-797 ◽  
Author(s):  
Ji Hyun Youk ◽  
Eun Ju Son ◽  
Kyunghwa Han ◽  
Hye Mi Gweon ◽  
Jeong-Ah Kim

Background Various size and shape of region of interest (ROI) can be applied for shear-wave elastography (SWE). Purpose To investigate the diagnostic performance of SWE according to ROI settings for breast masses. Material and Methods To measure elasticity for 142 lesions, ROIs were set as follows: circular ROIs 1 mm (ROI-1), 2 mm (ROI-2), and 3 mm (ROI-3) in diameter placed over the stiffest part of the mass; freehand ROIs drawn by tracing the border of mass (ROI-M) and the area of peritumoral increased stiffness (ROI-MR); and circular ROIs placed within the mass (ROI-C) and to encompass the area of peritumoral increased stiffness (ROI-CR). Mean (Emean), maximum (Emax), and standard deviation (ESD) of elasticity values and their areas under the receiver operating characteristic (ROC) curve (AUCs) for diagnostic performance were compared. Results Means of Emean and ESD significantly differed between ROI-1, ROI-2, and ROI-3 ( P < 0.0001), whereas means of Emax did not ( P = 0.50). For ESD, ROI-1 (0.874) showed a lower AUC than ROI-2 (0.964) and ROI-3 (0.975) ( P < 0.002). The mean ESD was significantly different between ROI-M and ROI-MR and between ROI-C and ROI-CR ( P < 0.0001). The AUCs of ESD in ROI-M and ROI-C were significantly lower than in ROI-MR ( P = 0.041 and 0.015) and ROI-CR ( P = 0.007 and 0.004). Conclusion Shear-wave elasticity values and their diagnostic performance vary based on ROI settings and elasticity indices. Emax is recommended for the ROIs over the stiffest part of mass and an ROI encompassing the peritumoral area of increased stiffness is recommended for elastic heterogeneity of mass.


2019 ◽  
Vol 41 (04) ◽  
pp. 390-396 ◽  
Author(s):  
Ji Hyun Youk ◽  
Jin Young Kwak ◽  
Eunjung Lee ◽  
Eun Ju Son ◽  
Jeong-Ah Kim

Abstract Purpose To identify and compare diagnostic performance of radiomic features between grayscale ultrasound (US) and shear-wave elastography (SWE) in breast masses. Materials and Methods We retrospectively collected 328 pathologically confirmed breast masses in 296 women who underwent grayscale US and SWE before biopsy or surgery. A representative SWE image of the mass displayed with a grayscale image in split-screen mode was selected. An ROI was delineated around the mass boundary on the grayscale image and copied and pasted to the SWE image by a dedicated breast radiologist for lesion segmentation. A total of 730 candidate radiomic features including first-order statistics and textural and wavelet features were extracted from each image. LASSO regression was used for data dimension reduction and feature selection. Univariate and multivariate logistic regression was performed to identify independent radiomic features, differentiating between benign and malignant masses with calculation of the AUC. Results Of 328 breast masses, 205 (62.5 %) were benign and 123 (37.5 %) were malignant. Following radiomic feature selection, 22 features from grayscale and 6 features from SWE remained. On univariate analysis, all 6 SWE radiomic features (P < 0.0001) and 21 of 22 grayscale radiomic features (P < 0.03) were significantly different between benign and malignant masses. After multivariate analysis, three grayscale radiomic features and two SWE radiomic features were independently associated with malignant breast masses. The AUC was 0.929 for grayscale US and 0.992 for SWE (P < 0.001). Conclusion US radiomic features may have the potential to improve diagnostic performance for breast masses, but further investigation of independent and larger datasets is needed.


2017 ◽  
Vol 59 (6) ◽  
pp. 657-663 ◽  
Author(s):  
Jin Hee Moon ◽  
Ji-Young Hwang ◽  
Jeong Seon Park ◽  
Sung Hye Koh ◽  
Sun-Young Park

Background Shear wave elastography (SWE) using a region of interest (ROI) can demonstrate the quantitative elasticity of breast lesions. Purpose To prospectively evaluate the impact of two different ROI sizes on the diagnostic performance of SWE for differentiating benign and malignant breast lesions. Material and Methods A total of 154 breast lesions were included. Two types of ROIs were investigated: one involving an approximately 2-mm diameter, small round ROIs placed over the stiffest area of the lesion, as determined by SWE (ROI-S); and another ROI drawn along the margin of the lesion using a touch pen or track ball to encompass the entire lesion (ROI-M). Maximum elasticity (Emax), mean elasticity (Emean), minimum elasticity (Emin), and standard deviation (SD) were measured for the two ROIs. The area under the receiver operating characteristic curve (AUC) as well as the sensitivity and specificity of each elasticity value were determined. Results The AUCs for ROI-S were higher than those for ROI-M when differentiating benign and malignant breast solid lesions. The Emax, Emean, Emin, and SD of the elasticity values for ROI-S were 0.865, 0.857, 0.816, and 0.849, respectively, and for ROI-M were 0.820, 0.780, 0.724, and 0.837, respectively. However, only Emax ( P = 0.0024) and Emean ( P = 0.0015) showed statistically significant differences. For ROI-S, the sensitivity and specificity of Emax were 78.8% and 84.3%, respectively, and those for Emean were 80.8% and 81.4%, respectively. Conclusion Using ROI-S with Emax and Emean has better diagnostic performance than ROI-M for differentiating between benign and malignant breast lesions.


2020 ◽  
Vol 42 (4-5) ◽  
pp. 213-220 ◽  
Author(s):  
Tomoyuki Fujioka ◽  
Leona Katsuta ◽  
Kazunori Kubota ◽  
Mio Mori ◽  
Yuka Kikuchi ◽  
...  

We aimed to use deep learning with convolutional neural networks (CNNs) to discriminate images of benign and malignant breast masses on ultrasound shear wave elastography (SWE). We retrospectively gathered 158 images of benign masses and 146 images of malignant masses as training data for SWE. A deep learning model was constructed using several CNN architectures (Xception, InceptionV3, InceptionResNetV2, DenseNet121, DenseNet169, and NASNetMobile) with 50, 100, and 200 epochs. We analyzed SWE images of 38 benign masses and 35 malignant masses as test data. Two radiologists interpreted these test data through a consensus reading using a 5-point visual color assessment (SWEc) and the mean elasticity value (in kPa) (SWEe). Sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were calculated. The best CNN model (which was DenseNet169 with 100 epochs), SWEc, and SWEe had a sensitivity of 0.857, 0.829, and 0.914 and a specificity of 0.789, 0.737, and 0.763 respectively. The CNNs exhibited a mean AUC of 0.870 (range, 0.844–0.898), and SWEc and SWEe had an AUC of 0.821 and 0.855. The CNNs had an equal or better diagnostic performance compared with radiologist readings. DenseNet169 with 100 epochs, Xception with 50 epochs, and Xception with 100 epochs had a better diagnostic performance compared with SWEc ( P = 0.018–0.037). Deep learning with CNNs exhibited equal or higher AUC compared with radiologists when discriminating benign from malignant breast masses on ultrasound SWE.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1015
Author(s):  
Antonio Bulum ◽  
Gordana Ivanac ◽  
Eugen Divjak ◽  
Iva Biondić Špoljar ◽  
Martina Džoić Dominković ◽  
...  

Shear wave elastography (SWE) is a type of ultrasound elastography with which the elastic properties of breast tissues can be quantitatively assessed. The purpose of this study was to determine the impact of different regions of interest (ROI) and lesion size on the performance of SWE in differentiating malignant breast lesions. The study included 150 female patients with histopathologically confirmed malignant breast lesions. Minimal (Emin), mean (Emean), maximal (Emax) elastic modulus and elasticity ratio (e-ratio) values were measured using a circular ROI size of 2, 4 and 6 mm diameters and the lesions were divided into large (diameter ≥ 15 mm) and small (diameter < 15 mm). Highest Emin, Emean and e-ratio values and lowest variability were observed when using the 2 mm ROI. Emax values did not differ between different ROI sizes. Larger lesions had significantly higher Emean and Emax values, but there was no difference in e-ratio values between lesions of different sizes. In conclusion, when measuring the Emin, Emean and e-ratio of malignant breast lesions using SWE the smallest possible ROI size should be used regardless of lesion size. ROI size has no impact on Emax values while lesion size has no impact on e-ratio values.


Sign in / Sign up

Export Citation Format

Share Document