scholarly journals Retrieval of a periodontally compromised tooth by allogeneic grafting of mesenchymal stem cells from dental pulp: A case report

2018 ◽  
Vol 46 (7) ◽  
pp. 2983-2993 ◽  
Author(s):  
Beatriz Hernández-Monjaraz ◽  
Edelmiro Santiago-Osorio ◽  
Edgar Ledesma-Martínez ◽  
Andrés Alcauter-Zavala ◽  
Víctor Manuel Mendoza-Núñez

Objective To report a case of successful allogeneic grafting of mesenchymal dental pulp stem cells (DPSCs) as preliminary findings in a patient with periodontal disease enrolled into clinical trial ISRCTN12831118. Methods Mesenchymal stem cells from the dental pulp of a deciduous tooth from a 7-year-old donor were separated from the pulp chamber and processed via enzymatic digestion and centrifugation. DPSCs were passaged and cultured on a 35 × 13 mm culture dish in minimum essential medium-alpha, without supplementation. After reaching 80% confluency, 5 x 106 allogeneic DPSCs in 250 µl phosphate buffered saline were seeded onto a dry scaffold of lyophilized collagen-polyvinylpyrrolidone sponge placed in the left lower premolar area of a 61-year-old patient with periodontal disease. Surgical access to the lower premolar area was achieved using the flap technique. Results At 3 and 6 months following allogeneic graft, the patient showed no sign of rejection and exhibited decreases in tooth mobility, periodontal pocket depth and bone defect area. Bone mineral density had increased at the graft site. Conclusions Regenerative periodontal therapy using DPSCs of allogeneic origin may be a promising treatment for periodontal disease-induced bone defects.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Beatriz Hernández-Monjaraz ◽  
Edelmiro Santiago-Osorio ◽  
Edgar Ledesma-Martínez ◽  
Itzen Aguiñiga-Sánchez ◽  
Norma Angélica Sosa-Hernández ◽  
...  

Periodontal disease (PD) is one of the main causes of tooth loss and is related to oxidative stress and chronic inflammation. Although different treatments have been proposed in the past, the vast majority do not regenerate lost tissues. In this sense, the use of dental pulp mesenchymal stem cells (DPMSCs) seems to be an alternative for the regeneration of periodontal bone tissue. A quasi-experimental study was conducted in a sample of 22 adults between 55 and 64 years of age with PD, without uncontrolled systemic chronic diseases. Two groups were formed randomly: (i) experimental group (EG) n=11, with a treatment based on DPMSCs; and a (ii) control group (CG) n=11, without a treatment of DPMSCs. Every participant underwent clinical and radiological evaluations and measurement of bone mineral density (BMD) by tomography. Saliva samples were taken as well, to determine the total concentration of antioxidants, superoxide dismutase (SOD), lipoperoxides, and interleukins (IL), before and 6 months after treatment. All subjects underwent curettage and periodontal surgery, the EG had a collagen scaffold treated with DPMSCs, while the CG only had the collagen scaffold placed. The EG with DPMSCs showed an increase in the BMD of the alveolar bone with a borderline statistical significance (baseline 638.82±181.7 vs. posttreatment 781.26±162.2 HU, p=0.09). Regarding oxidative stress and inflammation markers, salivary SOD levels were significantly higher in EG (baseline 1.49±0.96 vs. 2.14±1.12 U/L posttreatment, p<0.05) meanwhile IL1β levels had a decrease (baseline 1001.91±675.5vs. posttreatment 722.3±349.4 pg/ml, p<0.05). Our findings suggest that a DPMSCs treatment based on DPMSCs has both an effect on bone regeneration linked to an increased SOD and decreased levels of IL1β in aging subjects with PD.


Author(s):  
Antoine Berbéri ◽  
Joseph Sabbagh ◽  
Rita Bou Assaf ◽  
Michella Ghassibe-Sabbagh ◽  
Fatima Al-Nemer ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2269
Author(s):  
Keiji Masuda ◽  
Xu Han ◽  
Hiroki Kato ◽  
Hiroshi Sato ◽  
Yu Zhang ◽  
...  

A subpopulation of mesenchymal stem cells, developmentally derived from multipotent neural crest cells that form multiple facial tissues, resides within the dental pulp of human teeth. These stem cells show high proliferative capacity in vitro and are multipotent, including adipogenic, myogenic, osteogenic, chondrogenic, and neurogenic potential. Teeth containing viable cells are harvested via minimally invasive procedures, based on various clinical diagnoses, but then usually discarded as medical waste, indicating the relatively low ethical considerations to reuse these cells for medical applications. Previous studies have demonstrated that stem cells derived from healthy subjects are an excellent source for cell-based medicine, tissue regeneration, and bioengineering. Furthermore, stem cells donated by patients affected by genetic disorders can serve as in vitro models of disease-specific genetic variants, indicating additional applications of these stem cells with high plasticity. This review discusses the benefits, limitations, and perspectives of patient-derived dental pulp stem cells as alternatives that may complement other excellent, yet incomplete stem cell models, such as induced pluripotent stem cells, together with our recent data.


PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e97026 ◽  
Author(s):  
Dandan Ma ◽  
Li Cui ◽  
Jie Gao ◽  
Wenjuan Yan ◽  
Ying Liu ◽  
...  

Author(s):  
Ning Zhang ◽  
Takeshi Utsunomiya ◽  
Tzuhua Lin ◽  
Yusuke Kohno ◽  
Masaya Ueno ◽  
...  

Wear particles from total joint arthroplasties (TJAs) induce chronic inflammation, macrophage infiltration and lead to bone loss by promoting bone destruction and inhibiting bone formation. Inhibition of particle-associated chronic inflammation and the associated bone loss is critical to the success and survivorship of TJAs. The purpose of this study is to test the hypothesis that polyethylene particle induced chronic inflammatory bone loss could be suppressed by local injection of NF-κB sensing Interleukin-4 (IL-4) over-expressing MSCs using the murine continuous polyethylene particle infusion model. The animal model was generated with continuous infusion of polyethylene particles into the intramedullary space of the femur for 6 weeks. Cells were locally injected into the intramedullary space 3 weeks after the primary surgery. Femurs were collected 6 weeks after the primary surgery. Micro-computational tomography (μCT), histochemical and immunohistochemical analyses were performed. Particle-infusion resulted in a prolonged pro-inflammatory M1 macrophage dominated phenotype and a decrease of the anti-inflammatory M2 macrophage phenotype, an increase in TRAP positive osteoclasts, and lower alkaline phosphatase staining area and bone mineral density, indicating chronic particle-associated inflammatory bone loss. Local injection of MSCs or NF-κB sensing IL-4 over-expressing MSCs reversed the particle-associated chronic inflammatory bone loss and facilitated bone healing. These results demonstrated that local inflammatory bone loss can be effectively modulated via MSC-based treatments, which could be an efficacious therapeutic strategy for periprosthetic osteolysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Da Yeon Lee ◽  
Sung Eun Lee ◽  
Do Hyeon Kwon ◽  
Saraswathy Nithiyanandam ◽  
Mi Ha Lee ◽  
...  

Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) have been studied for their application to manage various neurological diseases, owing to their anti-inflammatory, immunomodulatory, paracrine, and antiapoptotic ability, as well as their homing capacity to specific regions of brain injury. Among mesenchymal stem cells, such as BM-MSCs, adipose-derived MSCs, and umbilical cord MSCs, BM-MSCs have many merits as cell therapeutic agents based on their widespread availability and relatively easy attainability and in vitro handling. For stem cell-based therapy with BM-MSCs, it is essential to perform ex vivo expansion as low numbers of MSCs are obtained in bone marrow aspirates. Depending on timing, before hBM-MSC transplantation into patients, after detaching them from the culture dish, cell viability, deformability, cell size, and membrane fluidity are decreased, whereas reactive oxygen species generation, lipid peroxidation, and cytosolic vacuoles are increased. Thus, the quality and freshness of hBM-MSCs decrease over time after detachment from the culture dish. Especially, for neurological disease cell therapy, the deformability of BM-MSCs is particularly important in the brain for the development of microvessels. As studies on the traditional characteristics of hBM-MSCs before transplantation into the brain are very limited, omics and machine learning approaches are needed to evaluate cell conditions with indepth and comprehensive analyses. Here, we provide an overview of hBM-MSCs, the application of these cells to various neurological diseases, and improvements in their quality and freshness based on integrated omics after detachment from the culture dish for successful cell therapy.


Sign in / Sign up

Export Citation Format

Share Document