scholarly journals Tumor necrosis factor-α small interfering RNA alveolar epithelial cell-targeting nanoparticles reduce lung injury in C57BL/6J mice with sepsis

2021 ◽  
Vol 49 (1) ◽  
pp. 030006052098465
Author(s):  
Like Qian ◽  
Xi Yin ◽  
Jiahao Ji ◽  
Zhengli Chen ◽  
He Fang ◽  
...  

Background The role of tumor necrosis factor (TNF)-α small interfering (si)RNA alveolar epithelial cell (AEC)-targeting nanoparticles in lung injury is unclear. Methods Sixty C57BL/6J mice with sepsis were divided into normal, control, sham, 25 mg/kg, 50 mg/kg, and 100 mg/kg siRNA AEC-targeting nanoparticles groups (n = 10 per group). The wet:dry lung weight ratio, and hematoxylin and eosin staining, western blotting, and enzyme-linked immunosorbent assays for inflammatory factors were conducted to compare differences among groups. Results The wet:dry ratio was significantly lower in control and sham groups than other groups. TNF-α siRNA AEC-targeting nanoparticles significantly reduced the number of eosinophils, with significantly lower numbers in the 50 mg/kg group than in 25 mg/kg and 100 mg/kg groups. The nanoparticles also significantly reduced the expression of TNF-α, B-cell lymphoma-2, caspase 3, interleukin (IL)-1β, and IL-6, with TNF-α expression being significantly lower in the 50 mg/kg group than in 25 mg/kg and 100 mg/kg groups. Conclusion TNF-α siRNA AEC-targeting nanoparticles appear to be effective at improving lung injury-related sepsis, and 50 mg/kg may be a preferred dose option for administration.

1991 ◽  
Vol 70 (6) ◽  
pp. 2645-2649 ◽  
Author(s):  
R. Welbourn ◽  
G. Goldman ◽  
M. O'Riordain ◽  
T. F. Lindsay ◽  
I. S. Paterson ◽  
...  

Ischemia and reperfusion of the ischemic lower torso lead to a neutrophil- (PMN) dependent lung injury characterized by PMN sequestration and permeability edema. This mimics the injury seen after infusion of tumor necrosis factor alpha (TNF), a potent activator of PMN and endothelium. This study tests whether TNF is a mediator of the lung injury after lower torso ischemia. Anesthetized rats underwent 4 h of bilateral hindlimb tourniquet ischemia, followed by reperfusion for 10 min, 30 min, 1, 2, 3, and 4 h (n = 6 for each time point). Quantitative lung histology indicated progressive sequestration of PMN in the lungs, 25 +/- 3 (SE) PMN/10 high-power fields (HPF) 10 min after reperfusion vs. 20 +/- 2 PMN/10 HPF in sham animals (NS), increasing to 53 +/- 5 PMN/10 HPF after 4 h vs. 23 +/- 3 PMN/10 HPF in sham animals (P less than 0.01). There was lung permeability, shown by increasing protein accumulation in bronchoalveolar lavage (BAL) fluid, which 4 h after reperfusion was 599 +/- 91 vs. 214 +/- 35 micrograms/ml in sham animals (P less than 0.01). Similarly, there was edema, shown by the lung wet-to-dry weight ratio, which increased by 4 h to 4.70 +/- 0.12 vs. 4.02 +/- 0.17 in sham animals (P less than 0.01). There was generation of leukotriene B4 in BAL fluid (720 +/- 140 vs. 240 +/- 40 pg/ml, P less than 0.01), and in three of six rats tested at this time TNF was detected in plasma, with a mean value of 167 pg/ml. TNF was not detectable in any sham animal.(ABSTRACT TRUNCATED AT 250 WORDS)


1998 ◽  
Vol 275 (6) ◽  
pp. L1208-L1218 ◽  
Author(s):  
Luis A. Ortiz ◽  
Kryztof Moroz ◽  
Jing-Yao Liu ◽  
Gary W. Hoyle ◽  
Timothy Hammond ◽  
...  

Apoptosis is considered to be a protective mechanism that limits lung injury. However, apoptosis might contribute to the inflammatory burden present in the injured lung. The exposure of mice to bleomycin (BLM) is a well-established model for the study of lung injury. BLM exposure induces DNA damage and enhances tumor necrosis factor (TNF)-α expression in the lung. To evaluate the importance of alveolar macrophage (AM) apoptosis in the pathogenesis of lung injury, we exposed BLM-sensitive (C57BL/6) and BLM-resistant (BALB/c) mice to BLM (120 mg/kg) and studied the induction of apoptosis [by light-microscopy changes (2, 8, 12, 24, 48, and 72 h) and annexin V uptake by flow cytometry (24 h)], the secretion of TNF-α (measured by ELISA), and the expression of p53 (by immunoblotting) in AM retrieved from these mice. BLM, but not vehicle, induced apoptosis in AM from both murine strains. The numbers of apoptotic AM were significantly greater ( P < 0.001) in C57BL/6 mice (52.9%) compared with BALB/c mice (40.8%) as demonstrated by annexin V uptake. BLM induction of apoptosis in AM was preceded by an increased secretion of TNF-α in C57BL/6 but not in BALB/c mice. Furthermore, double TNF-α receptor-deficient mice, developed on a C57BL/6 background, demonstrated significantly ( P < 0.001) lower numbers of apoptotic AM compared with C57BL/6 and BALB/c mice. BLM also enhanced p53 expression in AM from both murine strains. However, p53-deficient mice developed BLM-induced lung injury, exhibited similar lung cell proliferation (measured as proliferating cell nuclear antigen immunostaining), and accumulated similar amounts of lung hydroxyproline (65 ± 6.9 μg/lung) as did C57BL/6 (62 ± 6.5 μg/lung) mice. Therefore, AM apoptosis is occurring during BLM-induced lung injury in a manner that correlates with murine strain sensitivity to BLM. Furthermore, TNF-α secretion rather than p53 expression contributes to the difference in murine strain response to BLM. tumor necrosis factor; strain susceptibility


2000 ◽  
Vol 278 (5) ◽  
pp. L1082-L1090 ◽  
Author(s):  
Gloria S. Pryhuber ◽  
David P. O'Brien ◽  
Raymond Baggs ◽  
Richard Phipps ◽  
Heidie Huyck ◽  
...  

Hyperoxic lung injury, believed to be mediated by reactive oxygen species, inflammatory cell activation, and release of cytotoxic cytokines, complicates the care of many critically ill patients. The cytokine tumor necrosis factor (TNF)-α is induced in lungs exposed to high concentrations of oxygen; however, its contribution to hyperoxia-induced lung injury remains unclear. Both TNF-α treatment and blockade with anti-TNF antibodies increased survival in mice exposed to hyperoxia. In the current study, to determine if pulmonary oxygen toxicity is dependent on either of the TNF receptors, type I (TNFR-I) or type II (TNFR-II), TNFR-I or TNFR-II gene-ablated [(−/−)] mice and wild-type control mice (WT; C57BL/6) were studied in >95% oxygen. There was no difference in average length of survival, although early survival was better for TNFR-I(−/−) mice than for either TNFR-II(−/−) or WT mice. At 48 h of hyperoxia, slightly more alveolar septal thickening and peribronchiolar and periarteriolar edema were detected in WT than in TNFR-I(−/−) lungs. By 84 h of oxygen exposure, TNFR-I(−/−) mice demonstrated greater alveolar debris, inflammation, and edema than WT mice. TNFR-I was necessary for induction of cytokine interleukin (IL)-1β, IL-1 receptor antagonist, chemokine macrophage inflammatory protein (MIP)-1β, MIP-2, interferon-γ-induced protein-10 (IP-10), and monocyte chemoattractant protein (MCP)-1 mRNA in response to intratracheal administration of recombinant murine TNF-α. However, IL-1β, IL-6, macrophage migration inhibitory factor, MIP-1α, MIP-2, and MCP-1 mRNAs were comparably induced by hyperoxia in TNFR-I(−/−) and WT lungs. In contrast, mRNA for manganese superoxide dismutase and intercellular adhesion molecule-1 were induced by hyperoxia only in WT mice. Differences in early survival and toxicity suggest that pulmonary oxygen toxicity is in part mediated by TNFR-I. However, induction of specific cytokine and chemokine mRNA and lethality in response to severe hyperoxia was independent of TNFR-I expression. The current study supports the prediction that therapeutic efforts to block TNF-α receptor function will not protect against pulmonary oxygen toxicity.


2020 ◽  
Vol 133 (4) ◽  
pp. 905-918
Author(s):  
Yaxin Wang ◽  
Yiyi Yang ◽  
Lin Chen ◽  
Wei Xiong ◽  
Limin Song ◽  
...  

Background Alveolar epithelial cell apoptosis is implicated in the onset of ventilator-induced lung injury. Death-associated protein kinase 1 (DAPK1) is associated with cell apoptosis. The hypothesis was that DAPK1 participates in ventilator-induced lung injury through promoting alveolar epithelial cell apoptosis. Methods Apoptosis of mouse alveolar epithelial cell was induced by cyclic stretch. DAPK1 expression was altered (knockdown or overexpressed) in vitro by using a small interfering RNA or a plasmid, respectively. C57/BL6 male mice (n = 6) received high tidal volume ventilation to establish a lung injury model. Adeno-associated virus transfection of short hairpin RNA and DAPK1 inhibitor repressed DAPK1 expression and activation in lungs, respectively. The primary outcomes were alveolar epithelial cell apoptosis and lung injury. Results Compared with the control group, the 24-h cyclic stretch group showed significantly higher alveolar epithelial cell apoptotic percentage (45 ± 4% fold vs. 6 ± 1% fold; P &lt; 0.0001) and relative DAPK1 expression, and this group also demonstrated a reduced apoptotic percentage after DAPK1 knockdown (27 ± 5% fold vs. 53 ± 8% fold; P &lt; 0.0001). A promoted apoptotic percentage in DAPK1 overexpression was observed without stretching (49 ± 6% fold vs. 14 ± 3% fold; P &lt; 0.0001). Alterations in B-cell lymphoma 2 and B-cell lymphoma 2–associated X are associated with DAPK1 expression. The mice subjected to high tidal volume had higher DAPK1 expression and alveolar epithelial cell apoptotic percentage in lungs compared with the low tidal volume group (43 ± 6% fold vs. 4 ± 2% fold; P &lt; 0.0001). Inhibition of DAPK1 through adeno-associated virus infection or DAPK1 inhibitor treatment appeared to be protective against lung injury with reduced lung injury score, resolved pulmonary inflammation, and repressed alveolar epithelial cell apoptotic percentage (47 ± 4% fold and 48 ± 6% fold; 35 ± 5% fold and 34 ± 4% fold; P &lt; 0.0001, respectively). Conclusions DAPK1 promotes the onset of ventilator-induced lung injury by triggering alveolar epithelial cell apoptosis through intrinsic apoptosis pathway in mice. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


1999 ◽  
Vol 87 (2) ◽  
pp. 510-515 ◽  
Author(s):  
Yumiko Imai ◽  
Toshio Kawano ◽  
Sanju Iwamoto ◽  
Satoshi Nakagawa ◽  
Masao Takata ◽  
...  

To evaluate the role of tumor necrosis factor (TNF)-α in the pathogenesis of ventilator-induced lung injury, we 1) measured TNF-α production in the lung caused by conventional mechanical ventilation (CMV) and 2) evaluated the protective effect of anti-TNF-α antibody (Ab) in saline-lavaged rabbit lungs. After they received saline lung lavage, rabbits were intratracheally instilled with 1 mg/kg of polyclonal anti-TNF-α Ab in the high-dose group ( n = 6), 0.2 mg/kg of anti-TNF-α Ab in the low-dose group ( n = 6), serum IgG fraction in the Ab control group ( n = 6), and saline in the saline control group ( n = 7). Animals then underwent CMV for 4 h. Levels of TNF-α in lung lavage fluid were significantly higher after CMV than before in both control groups. Pretreatment with intratracheal instillation of high and low doses of anti-TNF-α Ab improved oxygenation and respiratory compliance, reduced the infiltration of leukocytes, and ameliorated pathological findings. CMV led to TNF-α production in the lungs, and intratracheal instillation of anti-TNF-α Ab attenuated CMV-induced lung injury in this model.


2012 ◽  
Vol 303 (1) ◽  
pp. L75-L87 ◽  
Author(s):  
A. Charlotte P. Sewing ◽  
Crystal Kantores ◽  
Julijana Ivanovska ◽  
Alvin H. Lee ◽  
Azhar Masood ◽  
...  

Bleomycin-induced lung injury is characterized in the neonatal rat by inflammation, arrested lung growth, and pulmonary hypertension (PHT), as observed in human infants with severe bronchopulmonary dysplasia. Inhalation of CO2 (therapeutic hypercapnia) has been described to limit cytokine production and to have anti-inflammatory effects on the injured lung; we therefore hypothesized that therapeutic hypercapnia would prevent bleomycin-induced lung injury. Spontaneously breathing rat pups were treated with bleomycin (1 mg/kg/d ip) or saline vehicle from postnatal days 1–14 while being continuously exposed to 5% CO2 (PaCO2 elevated by 15–20 mmHg), 7% CO2 (PaCO2 elevated by 35 mmHg), or normocapnia. Bleomycin-treated animals exposed to 7%, but not 5%, CO2, had significantly attenuated lung tissue macrophage influx and PHT, as evidenced by normalized pulmonary vascular resistance and right ventricular systolic function, decreased right ventricular hypertrophy, and attenuated remodeling of pulmonary resistance arteries. The level of CO2 neither prevented increased tissue neutrophil influx nor led to improvements in decreased lung weight, septal thinning, impaired alveolarization, or decreased numbers of peripheral arteries. Bleomycin led to increased expression and content of lung tumor necrosis factor (TNF)-α, which was found to colocalize with tissue macrophages and to be attenuated by exposure to 7% CO2. Inhibition of TNF-α signaling with the soluble TNF-2 receptor etanercept (0.4 mg/kg ip from days 1–14 on alternate days) prevented bleomycin-induced PHT without decreasing tissue macrophages and, similar to CO2, had no effect on arrested alveolar development. Our findings are consistent with a preventive effect of therapeutic hypercapnia with 7% CO2 on bleomycin-induced PHT via attenuation of macrophage-derived TNF-α. Neither tissue macrophages nor TNF-α appeared to contribute to arrested lung development induced by bleomycin. That 7% CO2 normalized pulmonary vascular resistance and right ventricular function without improving inhibited airway and vascular development suggests that vascular hypoplasia does not contribute significantly to functional changes of PHT in this model.


2019 ◽  
Vol 88 ◽  
pp. 149-150 ◽  
Author(s):  
Erkoseoglu Ilknur ◽  
Kadioglu Mine ◽  
Cavusoglu Irem ◽  
Sisman Mulkiye ◽  
Aran Turhan ◽  
...  

2020 ◽  
Author(s):  
Wenna Gao ◽  
Ruilin Zhu ◽  
liu yang

Background: Mounting evidence has suggested tumor necrosis factor-alpha (TNF-α) can promote the development of diabetic retinopathy (DR), and TNF-α gene variants may influence DR risk. However, the results are quite different. Objectives: To comprehensively address this issue, we performed the meta-analysis to evaluate the association of TNF-α-308 G/A and -238 G/A polymorphism with DR. Method: Data were retrieved in a systematic manner and analyzed using STATA Statistical Software. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of associations. Allelic and genotypic comparisons between cases and controls were evaluated. Results: For the TNF-α-308 G/A polymorphism, overall analysis suggested a marginal association with DR [the OR(95%CI) of (GA versus GG), (GA + AA) versus GG, and (A versus G) are 1.21(1.04, 1.41), 1.20(1.03, 1.39), and 1.14(1.01, 1.30), respectively]. And the subgroup analysis indicated an enhanced association among the European population. For the TNF-α-238 G/A polymorphism, there was mild correlation in the entire group [the OR(95%CI) of (GA versus GG) is 1.55(1.14,2.11) ], which was strengthened among the Asian population. Conclusion: The meta-analysis suggested that -308 A and -238 A allele in TNF-α gene potentially increased DR risk and showed a discrepancy in different ethnicities.


Sign in / Sign up

Export Citation Format

Share Document