scholarly journals Persistent Corynebacterium bovis Infectious Hyperkeratotic Dermatitis in Immunocompetent Epidermal-Mutant dep/dep Mice

2020 ◽  
Vol 57 (4) ◽  
pp. 586-589
Author(s):  
Emily L. Miedel ◽  
Natalie H. Ragland ◽  
Andrea R. Slate ◽  
Robert W. Engelman

During a previously reported program-wide Corynebacterium bovis outbreak, both immunocompetent depilated ( dep/dep) mutant mice and transgenic mice that express the papillomavirus E6 oncoprotein became persistently infected with C. bovis. An orthokeratotic, hyperkeratotic, acanthotic dermatitis developed in the C. bovis–infected dep/dep mice, which remained C. bovis PCR-positive for >45 days prior to euthanasia as part of the program-wide C. bovis eradication effort. Since both affected strains of mice have altered skin homeostasis, immune status or the presence of hair may not alone be sufficient to explain strain susceptibility to C. bovis–related cutaneous disease. In order to avoid invalidation of preclinical studies due to C. bovis infection, it may be necessary to isolate immunodeficient mouse strains, implement facililty-wide surveillance for C. bovis, and sterilize equipment with vaporized hydrogen peroxide.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhanglong Peng ◽  
Supinder Bedi ◽  
Vivek Mann ◽  
Alamelu Sundaresan ◽  
Kohei Homma ◽  
...  

To mimic Alzheimer’s disease, transgenic mice overexpressing the amyloid precursor protein (APP) were used in this study. We hypothesize that the neuroprotective effects of ETAS®50, a standardized extract of Asparagus officinalis stem produced by Amino Up Co., Ltd. (Sapporo, Japan), are linked to the inhibition of the apoptosis cascade through an enhancement of the stress-response proteins: heat shock proteins (HSPs). APP-overexpressing mice (double-transgenic APP and PS1 mouse strains with a 129s6 background), ages 6-8 weeks old, and weighing 20-24 grams were successfully bred in our laboratory. The animals were divided into 5 groups. APP-overexpressing mice and wild-type (WT) mice were pretreated with ETAS®50 powder (50% elemental ETAS and 50% destrin) at 200 mg/kg and 1000 mg/kg body weight. Saline, the vehicle for ETAS®50, was administered in APP-overexpressing mice and WT mice. ETAS®50 and saline were administered by gavage daily for 1 month. Cognitive assessments, using the Morris Water Maze, demonstrated that memory was recovered following ETAS®50 treatment as compared to nontreated APP mice. At euthanization, the brain was removed and HSPs, amyloid β, tau proteins, and caspase-3 were evaluated through immunofluorescence staining with the appropriate antibodies. Our data indicate that APP mice have cognitive impairment along with elevated amyloid β, tau proteins, and caspase-3. ETAS®50 restored cognitive function in these transgenic mice, increased both HSP70 and HSP27, and attenuated pathogenic level of amyloid β, tau proteins, and caspsase-3 leading to neuroprotection. Our results were confirmed with a significant increase in HSP70 gene expression in the hippocampus.


2000 ◽  
Vol 191 (6) ◽  
pp. 1031-1044 ◽  
Author(s):  
Sarah L. Pogue ◽  
Christopher C. Goodnow

Conserved differences between the transmembrane and cytoplasmic domains of membrane immunoglobulin (Ig)M and IgG may alter the function of antigen receptors on naive versus memory B cells. Here, we compare the ability of these domains to signal B cell allelic exclusion and maturation in transgenic mice. A lysozyme-binding antibody was expressed in parallel sets of mice as IgM, IgG1, or a chimeric receptor with IgM extracellular domains and transmembrane/cytoplasmic domains of IgG1. Like IgM, the IgG1 or chimeric IgM/G receptors triggered heavy chain allelic exclusion and supported development of mature CD21+ B cells. Many of the IgG or IgM/G B cells became CD21high and downregulated their IgG and IgM/G receptors spontaneously, resembling memory B cells and B cells with mutations that exaggerate B cell antigen receptor signaling. Unlike IgM-transgenic mice, “edited” B cells that carry non–hen egg lysozyme binding receptors preferentially accumulated in IgG and IgM/G mice. This was most extreme in lines with the highest transgene copy number and diminished in variant offspring with fewer copies. The sensitivity of B cell maturation to transgene copy number conferred by the IgG transmembrane and cytoplasmic domains may explain the diverse phenotypes found in other IgG-transgenic mouse strains and may reflect exaggerated signaling.


2007 ◽  
Vol 81 (19) ◽  
pp. 10340-10351 ◽  
Author(s):  
Lisa Kercher ◽  
Cynthia Favara ◽  
James F. Striebel ◽  
Rachel LaCasse ◽  
Bruce Chesebro

ABSTRACT Activated microglia and astroglia are known to be involved in a variety of neurodegenerative diseases, including prion diseases. In the present experiments, we studied activation of astroglia and microglia after intraocular scrapie infection in transgenic mice expressing prion protein (PrP) in multiple cell types (tg7 mice) or in neurons only (tgNSE mice). In this model, scrapie infection and protease-resistant PrP deposition occurs in the retinas of both strains of mice, but retinal degeneration is observed only in tg7 mice. Our results showed that the retinas of tg7 and tgNSE mice both had astroglial activation with increased chemokine expression during the course of infection. However, only tg7 retinas exhibited strong microglial activation compared to tgNSE retinas, which showed little microglial activation by biochemical or morphological criteria. Therefore, microglial PrP expression might be required for scrapie-induced retinal microglial activation and damage. Furthermore, microglial activation preceded retinal neurodegeneration in tg7 mice, suggesting that activated microglia might contribute to the degenerative process, rather than being a response to the damage. Surprisingly, brain differed from retina in that an altered profile of microglial activation markers was upregulated, and the profiles in the two mouse strains were indistinguishable. Microglial activation in the brain was associated with severe brain vacuolation and neurodegeneration, leading to death. Thus, retinal and brain microglia appeared to differ in their requirements for activation, suggesting that different activation pathways occur in the two tissues.


2013 ◽  
Vol 261 (1-2) ◽  
pp. 29-36 ◽  
Author(s):  
Michael J. Turner ◽  
Michael J. LaMorte ◽  
Nathalie Chretien ◽  
Evis Havari ◽  
Bruce L. Roberts ◽  
...  

1996 ◽  
Vol 270 (4) ◽  
pp. E565-E571 ◽  
Author(s):  
K. Rajkumar ◽  
S. T. Dheen ◽  
L. J. Murphy

The insulin-like growth factors (IGFs) are present in the serum in association with high-affinity binding proteins (IGFBPs), which limit the hypoglycemic insulin-like actions of these growth factors. By utilizing the mouse phosphoglycerate kinase promoter to drive a rat genomic fragment, we developed three transgenic mouse strains that overexpressed IGFBP-1. Homozygous offspring demonstrated fasting hyperglycemia. The blood glucose values were 4.97 +/- 0.37, 4.57 +/- 0.33, and 5.58 +/- 0.50 mM for transgenic mice compared with 3.33 +/- 0.19 mM (mean +/- SE, P < 0.05) for the wild-type mice. The transgenic mice had more marked hyperglycemia after an intraperitoneal glucose challenge. The fasting serum insulin levels were significantly elevated in the transgenic mice; however, the insulin-to-glucose ratio was only modestly elevated in the fasting state and fell after a glucose challenge. Islet size and number were significantly increased; however, pancreatic insulin content was reduced (P < 0.05) compared with that of wild-type mice. The glucose response to subcutaneous insulin was similar in transgenic and wild-type mice. These data demonstrate that constitutive overexpression of IGFBP-1 results in impaired glucose tolerance with normal insulin sensitivity.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1605-1605 ◽  
Author(s):  
Tsutomu Toki ◽  
Fumiki Katsuoka ◽  
Rika Kanezaki ◽  
Seiji Watanabe ◽  
Takuya Kamio ◽  
...  

Abstract Both p45 and BACH transcription factors can form dimers with one of the small Maf proteins, and these heterodimers bind to Maf recognition elements (MARE). MARE is known to act as a critical cis-regulatory element of erythroid and megakaryocytic genes. While detailed analyses of p45 -null mutant mice and small maf compound mutant mice revealed that these factors are both critical for platelet production, the functional contributions of BACH1 and the relationship or redundancy between BACH1 and p45 in megakaryocytes remain to be clarified. To address these issues, we generated transgenic lines of mice bearing human BACH1 cDNA under the control of the GATA-1 locus hematopoietic regulatory domain. The transgenic mouse lines showed significant thrombocytopenia associated with impaired maturation of the megakaryocytes, and they developed myelofibrosis. The megakaryocytes overexpressing the BACH1 transgene exhibited reduced proplatelet formation. Since the phenotype of the BACH1 transgenic mice resembled that of the p45 -deficient mice, we examined the expression of the p45 NF-E2 target genes in the primary megakaryocytes from fetal liver cells of the BACH1 transgenic mice. RT-PCR analyses showed that expression of the hematopoietic-specific ß1-tubulin, thromboxane synthase ( TXAS), and of the 3ß-hydroxy-steroid dehydrogenase genes was significantly downregulated in the megakaryocytes from BACH1 transgenic mice. The TXAS gene is a well-known MARE-dependent gene containing functional MAREs in its promoter and in the second intron. To ask whether BACH1 actually binds to MARE in the megakaryocytic genes, we then performed chromatin immunoprecipitation (ChIP) analysis with a BACH1-specific antibody. A ChIP assay with a human megakaryocytic cell line, UT-7/TPO, demonstrated that BACH1 bound to the promoter and enhancers region in vivo. As expected, co-transfection with BACH1 or Bach1-MafK fusion protein (B1K) expression plasmids repressed the reporter gene activity driven by the TXAS promoter. These findings thus provide evidence that BACH1 acts as a transcriptional repressor in the regulation of MARE-dependent genes in megakaryocytes.


2013 ◽  
Vol 2013 (3) ◽  
pp. pdb.top073692 ◽  
Author(s):  
Eric F. Schmidt ◽  
Laura Kus ◽  
Shiaoching Gong ◽  
Nathaniel Heintz

2007 ◽  
Vol 81 (8) ◽  
pp. 4305-4314 ◽  
Author(s):  
Gregory J. Raymond ◽  
Lynne D. Raymond ◽  
Kimberly D. Meade-White ◽  
Andrew G. Hughson ◽  
Cynthia Favara ◽  
...  

ABSTRACT In vitro screening using the cell-free prion protein conversion system indicated that certain rodents may be susceptible to chronic wasting disease (CWD). Therefore, CWD isolates from mule deer, white-tailed deer, and elk were inoculated intracerebrally into various rodent species to assess the rodents' susceptibility and to develop new rodent models of CWD. The species inoculated were Syrian golden, Djungarian, Chinese, Siberian, and Armenian hamsters, transgenic mice expressing the Syrian golden hamster prion protein, and RML Swiss and C57BL10 wild-type mice. The transgenic mice and the Syrian golden, Chinese, Siberian, and Armenian hamsters had limited susceptibility to certain of the CWD inocula, as evidenced by incomplete attack rates and long incubation periods. For serial passages of CWD isolates in Syrian golden hamsters, incubation periods rapidly stabilized, with isolates having either short (85 to 89 days) or long (408 to 544 days) mean incubation periods and distinct neuropathological patterns. In contrast, wild-type mouse strains and Djungarian hamsters were not susceptible to CWD. These results show that CWD can be transmitted and adapted to some species of rodents and suggest that the cervid-derived CWD inocula may have contained or diverged into at least two distinct transmissible spongiform encephalopathy strains.


2006 ◽  
Vol 291 (4) ◽  
pp. L811-L819 ◽  
Author(s):  
Barbara A. Jacob ◽  
Kristi M. Porter ◽  
Shawn C. Elms ◽  
Po-Yung Cheng ◽  
Dean P. Jones ◽  
...  

Human immunodeficiency virus (HIV)-1 causes lung disease by increasing the host's susceptibility to pathogens. HIV-1 also causes an increase in systemic oxidative/nitrosative stress, perhaps enhancing the deleterious effects of secondary infections. Here we examined the ability of HIV-1 proteins to increase lung oxidative/nitrosative stress after lipopolysaccharide (LPS) (endotoxin) administration in an HIV-1 transgenic mouse model. Lung oxidative/nitrosative stress biomarkers studied 3 and 6 h after LPS administration were as follows: lung edema, tissue superoxide, NO metabolites, nitrotyrosine, hydrogen peroxide, and bronchoalveolar lavage fluid (BALF) glutathione (GSH). Blood serum cytokine levels were quantified to verify immune function of our nonimmunocompromised animal model. Results indicate that 3 h after LPS administration, HIV-1 transgenic mouse lung tissue has significantly greater edema and superoxide. Furthermore, NO metabolites are significantly elevated in HIV-1 transgenic mouse BALF, lung tissue, and blood plasma compared with those of wild-type mice. HIV-1 transgenic mice also produce significantly greater lung nitrotyrosine and hydrogen peroxide than wild-type mice. In addition, HIV-1 transgenic mice produce significantly less BALF GSH than wild-type mice 3 h after LPS treatment. Without treatment, serum cytokine levels are similar for HIV-1 transgenic and wild-type mice. After treatment, serum cytokine levels are significantly elevated in both HIV-1 transgenic and wild-type mice. Therefore, HIV-1 transgenic mice have significantly greater lung oxidative/nitrosative stress after endotoxin administration than wild-type mice, independent of immune function. These results indicate that HIV-1 proteins may increase pulmonary complications subsequent to a secondary infection by altering the lung redox potential.


Sign in / Sign up

Export Citation Format

Share Document