scholarly journals In Vitro Effects of Propofol on Gravid Human Myometrium

2008 ◽  
Vol 36 (6) ◽  
pp. 802-806 ◽  
Author(s):  
A. S. Thind ◽  
R. J. Turner

The aim of this study was to evaluate the direct effect of propofol (di-isopropyl phenol) on the contractile properties of gravid human uterine muscle. Six specimens of uterine muscle were obtained from term parturients undergoing elective lower segment caesarean section. Small strips (1 × 2 x 12 mm) of muscle were prepared and suspended in an organ bath containing oxygenated Kreb's solution at 36.5°C. Following preparation, spontaneous regular contractions developed at a rate of one contraction every six to 10 minutes. Force of contraction was recorded continuously using an isometric tension transducer. Following baseline measurements, propofol was introduced into the bath at concentrations corresponding to 2 /μg/ml, 5 /μg/ml and 8 /μg/ml. The specimens were also exposed to intralipid in concentrations equivalent to that found in the 8 μ/ml solution of propofol to determine whether this additive influenced uterine contractility. Contractility (defined as area under the tension/time curve) was decreased to 89 ± 6.5% of control at 2 μg/ml 53±4.3% at 5 μ/ml and 45 ± 4.1% at 8 μg/ml. This decrease in contractility was statistically significant at concentrations >2 μg/ml. Intralipid did not significantly affect uterine contractility. The results of this study show that propofol decreases isolated human uterine muscle contractility in a dose-dependent manner.

1983 ◽  
Vol 3 (3) ◽  
pp. 354-361 ◽  
Author(s):  
E. Müller-Schweinitzer ◽  
P. Neumann

PN 200–110 [4-(2, 1, 3-benzoxadiazol - 4 -) - 1,4-dihydro - 2,6 - dimethyl - pyridine - 3,5 - dicarboxylic acid methyl 1-methylethyl ester], a new dihydropyridine derivative, was investigated by recording isometric tension on spiral strips from human and canine arteries in tissue baths at 37°C. Responses to increasing concentrations of CaCl2 were investigated in calcium-free depolarizing solution (60 mmol/L KCl in equimolar replacement for NaCl, 50 mmol/L TRIZMA buffer, pH 7.4). Comparison of those concentrations that reduced the vasoconstrictor response to 1.6 mmol/L CaCl2 by 50% revealed the following order of potencies on both human and canine arteries: PN 200–110 > nimodipine > nifedipine. Responses to 5-hydroxytryptamine (5-HT) and blood were investigated in Krebs–Henseleit solution (NaHCO3 buffer). On canine arteries, PN 200–110 antagonized responses to 5-HT when used at 10–30 pmol/L; it was ∼70 times more potent on basilar than on mesenteric arteries, whereas both nifedipine and nimodipine were, respectively, ∼10 and 6 times more potent on basilar than on mesenteric arteries. When canine basilar arteries were constricted by the addition of blood to the organ bath, each of the investigated dihydropyridine derivatives elicited concentration-dependent relaxation, producing the following order of potencies: PN 200–110 > nifedipine = nimodipine. On human anterior cerebral arteries, the blood-induced contractions were counteracted in the following rank order: PN 200–110 = nimodipine > nifedipine. The results suggest that due to its potent calcium-blocking activity on cerebral arteries, PN 200–110 might be of value for the prevention and treatment of cerebrovascular spasms following subarachnoid hemorrhage.


2010 ◽  
Vol 24 (5) ◽  
pp. 1106-1106
Author(s):  
James T. Sharkey ◽  
Casey Cable ◽  
James Olcese

abstract Context: Studies have shown that labor occurs primarily in the night/morning hours. Recently, we identified the human myometrium as a target for melatonin (MEL), the neuroendocrine output signal coding for circadian night. Objective: The purpose of this study was to determine the signaling pathway underlying the effects of MEL on contractility and the contractile machinery in immortalized human myometrial cells. Design: To ascertain the signaling pathway of MEL leading to its effects on myometrial contractility in vitro, we performed gel retraction assays with cells exposed to iodo-MEL (I-MEL) with or without oxytocin and the Rho kinase inhibitor Y27632. I-MEL effects on inositol trisphosphate (IP3)/diacylglycerol (DAG)/protein kinase C (PKC) signaling were also investigated. Additionally, we assayed for caldesmon phosphorylation and ERK1/2 activation. Results: I-MEL was found to activate PKCα via the phospholipase C/IP3/DAG signaling pathway, which was confirmed by PKC enzyme assay. I-MEL did not affect myosin light chain phosphatase activity, and its effects on contractility were insensitive to Rho kinase inhibition. I-MEL did increase phosphorylation of ERK1/2 and caldesmon, which was inhibited by the MAPK kinase inhibitor PD98059 or the PKC inhibitor C1. Conclusions: MEL sensitizes myometrial cells to subsequent procontractile signals in vitro through activation of the phospholipase C/IP3/DAG signaling pathway, resulting in specific activation of PKCα and ERK1/2, thereby phosphorylating caldesmon, which increases actin availability for myosin binding and cross-bridging. In vivo, this sensitization would provide a mechanism for the increased nocturnal uterine contractility and labor that has been observed in late-term human pregnancy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


2013 ◽  
Vol 82 (3) ◽  
pp. 331-336 ◽  
Author(s):  
Jan Gnus ◽  
Albert Czerski ◽  
Stanisław Ferenc ◽  
Wojciech Zawadzki ◽  
Wojciech Witkiewicz ◽  
...  

Investigation of the effect of α1-adrenergic receptor subtypes on the contraction of the abdominal aorta will allow for more effective treatment of hypertension by use of selective antagonists. The aim of the study was to evaluate the participation of α1-adrenergic receptor subtypes in the contractility of the aortic smooth muscle cells in rabbits. The in vitro experiments were performed in isolated tissue preparations from 30 adult female New Zealand rabbits. The abdominal aortic sections were placed in organ bath chambers and contracted with increasing doses of non-selective α1-adrenergic receptor agonist phenylephrine without pre-incubation or after incubation in α1-adrenergic receptor subtype-selective or non-selective antagonists. Separate sections were incubated with increasing concentrations of antagonists. Phenylephrine caused maximal rise in arterial smooth muscle tone to 4.75 ± 0.47 mN. The most potent in blocking phenylephrine induced contraction was 5-metylurapidil (α1A-adrenergic receptor antagonist) followed by phentolamine and prazosin (non-selective α1-adrenergic receptor antagonists); BMY 7378 (α1D-adrenergic receptor antagonist), cyclazosin and L-765.314 (α1B-adrenergic receptor antagonists) were less effective. All antagonists, except BMY 7378 elicited relaxation of non-precontracted aorta in dose dependent manner. Our results indicate that postsynaptic α1A receptors are the most potent in producing rabbit abdominal aorta contraction, while α1B and α1D subtypes are less effective.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
F. Füeg ◽  
S. Santos ◽  
C. Haslinger ◽  
B. Stoiber ◽  
L. Schäffer ◽  
...  

Abstract Background Oxytocin receptor (OXTR) gene variants have been shown to affect the prevalence of preterm birth, mode of delivery and oxytocin (OXT) requirements for labor induction and augmentation. We hypothesized that this might be associated with different myometrium responses to oxytocin. Our aim was to investigate the influence of a selection of eight OXTR gene single nucleotide variants on oxytocin-induced stimulation of human myometrium contractility in vitro. Methods Human myometrium biopsies were collected during elective cesarean sections at term, if patients had given informed consent. Myometrial strips were submerged under tension in an organ bath and allowed to contract; the remaining material was stored at − 80 °C for further determination of relevant genetics and mRNA level. The area under the curve (AUC) of all contractions taking place in the absence of OXT and of those occurring upon OXT addition (for 30 min each) was measured. OXT stimulation, defined as the ratio between AUC measurements after OXT addition and those in the absence of OXT was calculated for each strip. TaqMan™ Assays were used to detect the allele distribution of the eight OXTR variants and to determine the relative amounts of OXTR-mRNA in the samples. For each variant, oxytocin stimulation of contractility was compared between samples homozygous for the reference allele (reference group) and samples with at least one variant allele (variant group) by linear regression. Results Sixty samples were included in the present study. For rs1042778, rs11706648, rs4686301, rs53576, rs237895, and rs237902, OXT stimulation was similar in the reference and in the variant groups. However, the values of OXT stimulation differed significantly between the reference and the variant groups for rs4686302 (3.1 vs. 4.1 times; p = 0.022) and rs237888 (3.2 vs. 5.5 times; p = 0.001). No significant differences between the levels of OXTR-mRNA in the various reference and corresponding variant groups were detected. Conclusions Patients with variant alleles of rs237888 and/or rs4686302 may be more sensitive to oxytocin stimulation, explaining why these sequence variants have been associated with lower cesarean section prevalence and premature birth, respectively.


2008 ◽  
Vol 21 (04) ◽  
pp. 337-342 ◽  
Author(s):  
M. A. Hossain ◽  
J. Park ◽  
S. H. Choi ◽  
G. Kim

SummaryDexamethasone (Dexa) has been commonly used in humans and domestic animals, particularly in the treatment of tendon injuries and cartilage degeneration. However, it is often associated with tendon rupture and impaired tendon and cartilage healing. In the present study, we investigated Dexa’s in vitro effects on the growth of cell proliferation and the induction of apoptosis in canine Achilles tendon cells and chondrocytes. Cell proliferation after treatment with Dexa for two to six days was quantified by a 2,3-bis{2-methoxy- 4-nitro-5-sulfophenyl}-2H-tetrazolium-5-carboxyanilide inner salt assay (XTT). The results showed that Dexa could inhibit the proliferation of tendon cells and chondrocytes at increasing concentrations (0.1–50 μg/ml) compared with untreated cells. Cell apoptosis was induced by Dexa, as evidenced by the typical nuclear apoptosis using Hoechst 33258 staining. Dexa increased the apoptosis of canine tendon cells and chondrocytes in a time-dependent manner. In canine tendon cells and chondrocytes that were treated with 25 and 50 μg/ml concentration of Dexa, the number of condensed apoptotic nuclei was significantly increased. In addition, culturing with Dexa and the glucocorticoid receptor blocker, mifepristone, significantly arrested apoptosis of tendon cells and chondrocytes. Based on our in vitro data, we hypothesized that in vivo treatment with glucocorticoids may diminish the proliferation of tendon and cartilage cells by increasing apoptosis and suppressing the proliferation. Our findings suggest that Dexa could be used with caution in dogs with articular or tendon problems.


2005 ◽  
Vol 49 (8) ◽  
pp. 3251-3255 ◽  
Author(s):  
Alexander Mathis ◽  
Peter Wild ◽  
Erik C. Boettger ◽  
Christian M. O. Kapel ◽  
Peter Deplazes

ABSTRACT The mitochondrial rRNA of the tapeworm species Echinococcus multilocularis carries an adenine at sequence position 2058 (numbering according to that for Escherichia coli) of the large-subunit rRNA (lsrRNA), while the nucleus-encoded rRNA, as determined in this study, is characterized by 2058G. This indicates a dichotomy in the drug susceptibilities of ribosomes: cytoplasmic ribosomes are predicted to be resistant to macrolide antibiotics, while mitochondrial ribosomes lack the most common chromosomal resistance determinant, lsrRNA 2058G. Upon incubation with the macrolide clarithromycin, the formation of vesicles from metacestode tissue was reduced in a dose-dependent manner. Electron microscopy revealed distinct morphological alterations both of the mitochondria and of the vesicle wall (e.g., loss of microtriches) in drug-treated vesicles. Adult worms lost their motility and displayed morphological changes (shortening and constriction of proglottids and the presence of vacuoles) upon incubation with clarithromycin. Our findings demonstrate that macrolides have distinct in vitro effects on E. multilocularis, endorsing the use of sequence-based in silico approaches for exploitation of available ribosomal drugs as anthelmintic agents.


2005 ◽  
Vol 90 (10) ◽  
pp. 5786-5796 ◽  
Author(s):  
Helen C. Doheny ◽  
Caoimhe M. Lynch ◽  
Terry J. Smith ◽  
John J. Morrison

Context: β3-Adrenoreceptor modulation in human myometrium during pregnancy is linked functionally to myometrial inhibition. Maxi-K+ channels (BKCa) play a significant role in modulating cell membrane potential and excitability. Objective: This study was designed to investigate the potential involvement of BKCa channel function in the response of human myometrium to β3-adrenoceptor activation. Design: Single and whole-cell electrophysiological BKCa channel recordings from freshly dispersed myocytes were obtained in the presence and absence of BRL37344, a specific β3-adrenoreceptor agonist. The in vitro effects of BRL37344 on isolated myometrial contractions, in the presence and absence of the specific BKCa channel blocker, iberiotoxin (IbTX), were investigated. Setting: The study was carried out at the Clinical Science Institute. Patients or Other Participants: Myometrial biopsies were obtained at elective cesarean delivery. Intervention: No intervention was applied. Main Outcome Measures: Open state probability of single channel recordings, whole cell currents, and myometrial contractile activity were measured. Results: Single-channel recordings identified the BKCa channel as a target of BRL37344. BRL37344 significantly increased the open state probability of this channel in a concentration-dependent manner (control 0.031 ± 0.004; 50 μm BRL37344 0.073 ± 0.005 (P < 0.001); and 100 μm BRL37344 0.101 ± 0.005 (P < 0.001). This effect was completely blocked after preincubation of the cells with 1 μm bupranolol, a nonspecific β-adrenoreceptor blocker, or 100 nm SR59230a, a specific β3-adrenoreceptor antagonist. In addition, BRL37344 increased whole-cell currents over a range of membrane potentials, and this effect was reversed by 100 nm IbTX. In vitro isometric tension studies demonstrated that BRL37344 exerted a significant concentration-dependent relaxant effect on human myometrial tissue (P < 0.05), and preincubation of these strips with IbTX attenuated this effect on both spontaneous and oxytocin-induced contractions (44.44 and 57.84% at 10−5m, respectively). Conclusions: These findings outline that activation of the BKCa channel may explain the potent uterorelaxant effect of β3-adrenoreceptor agonists.


2016 ◽  
Vol 124 (2) ◽  
pp. 378-386 ◽  
Author(s):  
Naida M. Cole ◽  
Jose C. A. Carvalho ◽  
Magda Erik-Soussi ◽  
Nivetha Ramachandran ◽  
Mrinalini Balki

Abstract Background The purpose of this study was to compare in vitro contractile effects of oxytocin and carbetocin on human term pregnant myometrium with and without oxytocin pretreatment. Methods This laboratory investigation was conducted on myometrial samples from women undergoing elective cesarean deliveries. The samples were dissected into four strips and suspended in individual organ bath chambers containing physiologic salt solution. After equilibration, they were pretreated with oxytocin 10−5 M (experimental group) or physiologic salt solution (control group) for 2 h and then subjected to dose–response testing with increasing concentrations of oxytocin or carbetocin (10−10 to 10−5 M). The amplitude, frequency, motility index (amplitude × frequency), and area under the curve of contractions were recorded and analyzed during the equilibration and dose–response periods. Comparisons were made between oxytocin-induced and carbetocin-induced contractions in control and oxytocin-pretreated groups. Motility index was the primary outcome measure. Results Sixty-three experiments were performed (carbetocin, n = 31; oxytocin, n = 32) on samples from 18 women. The motility index of contractions (√g.contractions/10 min) produced by oxytocin was significantly higher than carbetocin in both control (regression-estimated difference, 0.857; 95% CI, 0.290 to 1.425; P = 0.003) and oxytocin-pretreated (0.813; 0.328 to 1.299; P = 0.001) groups. The motility index was significantly lower in oxytocin-pretreated groups than their respective controls for both oxytocin (−1.040; −1.998 to −0.082; P = 0.03) and carbetocin (−0.996; −1.392 to −0.560; P < 0.001). Conclusions In vitro contractions produced by oxytocin are superior to carbetocin in human myometrium with or without oxytocin pretreatment. Oxytocin pretreatment results in attenuation of contractions induced by both oxytocin and carbetocin.


Sign in / Sign up

Export Citation Format

Share Document