scholarly journals The Role of Pharmacokinetics in Anaesthesia: Application to Intravenous Infusions

1987 ◽  
Vol 15 (1) ◽  
pp. 7-14 ◽  
Author(s):  
D. R. Stanski

Pharmacokinetic concepts describe the relationship between drug dose and resulting plasma concentration. A drug's pharmacokinetic profile can be described by distribution and elimination half-lives, initial volume of distribution, steady-state distribution volume, and metabolic and distributional clearance. After initiating a fixed rate of drug infusion, four to five terminal elimination half-lives are required to reach a steady state of constant plasma concentration. If a loading dose is given, a steady state can be achieved more rapidly. The most rapid method of achieving a constant plasma concentration involves using a variable rate of drug infusion that adjusts for the metabolic clearance and distribution of the drug. Computer-driven infusion pumps can be used to rapidly achieve, then maintain, constant plasma concentrations of a drug.

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e13512-e13512 ◽  
Author(s):  
Arthur P. Staddon ◽  
Trilok V. Parekh ◽  
Roland Elmar Knoblauch ◽  
Chi Keung ◽  
Apexa Bernard ◽  
...  

e13512 Background: Trabectedin (Yondelis; T) is a tetrahydroisoquinoline compound initially isolated from the marine tunicate, Ecteinascidia turbinata, and currently produced synthetically. It is primarily metabolized by the cytochrome P450 (CYP)3A4 enzyme. Thus, potent inducers or inhibitors of this enzyme may alter the plasma concentrations of T. This study assessed the effects of rifampin (R), a strong CYP3A4 inducer, on the pharmacokinetics (PK) and safety of T. Methods: In this 2-way crossover study, patients (≥18 years of age) with locally advanced or metastatic disease were randomized (1:1) to receive one of the 2 treatment sequences: sequence 1: R plus T followed 28 days later by T; sequence 2: T followed 28 days later by R plus T. During each sequence, R (600 mg/day) was administered for 6 consecutive days and T (1.3 mg/m2, IV) was administered over a 3 hour infusion. Dexamethasone (20 mg, IV) was administered before T administration. PK and safety of T were evaluated with and without coadministration of R. Results: Of the 11 enrolled patients, 8 were PK evaluable. Coadministration of R with T decreased mean maximum plasma concentration (Cmax) by approximately 22% and mean area under the plasma concentration-time curve from time 0 to the last quantifiable concentration (AUClast) by approximately 31% (Table 1). Coadministration of R with T also resulted in 23% shorter elimination half-life. Overall, the safety profile of T was comparable when administered alone or with R. Conclusions: In comparison with T alone, coadministration of R resulted in reduced systemic exposure of T in these 8 patients, as measured by Cmax and AUClast. The coadministration of potent inducers of CYP3A4 with T may increase the metabolic clearance of T. Clinical trial information: NCT01273480. [Table: see text]


1997 ◽  
Vol 15 (4) ◽  
pp. 1492-1501 ◽  
Author(s):  
C H Takimoto ◽  
W Dahut ◽  
M T Marino ◽  
H Nakashima ◽  
M D Liang ◽  
...  

PURPOSE To investigate the pharmacokinetics and pharmacodynamics of 9-aminocamptothecin (9-AC) infused over 72 hours at doses of 5 to 74 micrograms/m2/h. PATIENTS AND METHODS 9-AC lactone and total (lactone plus carboxylate) plasma concentrations were measured in 44 patients with solid tumors using a high-performance liquid chromatography (HPLC) assay. Fifteen patients underwent extended pharmacokinetic sampling to determine the distribution and elimination kinetics of 9-AC. RESULTS At steady-state, 8.7% +/- 4.7% (mean +/- SD) of the total drug circulated in plasma as the active 9-AC lactone. Clearance of 9-AC lactone was uniform (24.5 +/- 7.3 L/h/m2) over the entire dose range examined; however, total 9-AC clearance was nonlinear and increased at higher dose levels. In 15 patients treated at dose levels > or = 47 micrograms/m2/h, the volume of distribution at steady-state for 9-AC lactone was 195 +/- 114 L/m2 and for total 9-AC it was 23.6 +/- 10.6 L/m2. The elimination half-life was 4.47 +/- 0.53 hours for 9-AC lactone and 8.38 +/- 2.10 hours for total 9-AC. In pharmacodynamic studies, dose-limiting neutropenia correlated with steady-state lactone concentrations (Css) R2 = .77) and drug dose (R2 = .71). CONCLUSION Plasma 9-AC concentrations rapidly declined to low levels following the end of a 72-hour infusion and the mean fraction of total 9-AC circulating in plasma as the active lactone was less than 10%. The pharmacokinetics of 9-AC may have a great impact on its clinical activity and should be considered in the design of future clinical trials of this topoisomerase I inhibitor.


1996 ◽  
Vol 40 (8) ◽  
pp. 1903-1909 ◽  
Author(s):  
D E Uehlinger ◽  
F Schaedeli ◽  
M Kinzig ◽  
F Sörgel ◽  
F J Frey

The pharmacokinetic profile of fleroxacin was studied in eight noninfected patients receiving regular hemodialysis (four women and four men; mean age, 63 years; age range, 48 to 73 years). Dialysis clearances (mean +/- standard deviation) calculated from the amount of drug recovered in the dialysate exceeded those calculated from rates of extraction from plasma for fleroxacin (126 +/- 29 versus 73 +/- 11 ml/min) and its metabolite N-demethylfleroxacin (103 +/- 31 versus 72 +/- 15 ml/min) but not that for the metabolite fleroxacin N-oxide (100 +/- 25 versus 100 +/- 12 ml/min). Data were fitted to a two-compartment model over the total observation period of 8 days (six oral daily doses of 200 mg of fleroxacin on days 1 to 6 and hemodialysis treatments on day 1,3, and 6) by nonlinear mixed-effects modeling. The random variability of plasma fleroxacin concentrations was 13% about its prediction. The estimated metabolic clearance was 25 ml/min (coefficient of variation, 43%), and the calculated steady-state volume of distribution was 84 liters (coefficient of variation, 16%). The model was expanded for the two major metabolites by the addition of a two-compartment metabolite distribution. Formation clearances of N-demethylfleroxacin and fleroxacin N-oxide were estimated to be 54 and 33% of fleroxacin's metabolic clearance, respectively. The conclusions were as follows. Because of the slow metabolic clearance and intermittent dialysis treatment, steady-state conditions were not reached after 1 week of oral fleroxacin therapy, and there was relevant accumulation of fleroxacin as well as that of fleroxacin N-oxide in our patients with end-stage renal disease. We recommend that infected hemodialysis patients be treated with an initial oral dose of 400 mg of fleroxacin and then daily oral doses of 200 mg. One cannot recommend the treatment of this patient population with fleroxacin over prolonged time periods until more date about the levels of accumulation of fleroxacin and its metabolites in infected patients with renal disease are available.


2016 ◽  
Vol 4 (1) ◽  
pp. 66
Author(s):  
Abubakr El-Mahmoudy

The pharmacokinetics of lornoxicam (a non-steroidal anti-inflammatory drug) at a dose of 0.4 mg/Kg body weight was evaluated after single intravenous (i.v.) and intramuscular (i.m.) bolus administrations in rabbits. An HPLC assay using pure lornoxicam base as a standard was used to measure its concentrations in plasma at prefixed time points up to 12 hours post administration. Following an i.v. bolus injection, the plasma concentration-time curves of lornoxicam were best represented by two-compartment open model. The drug was rapidly distributed and moderately eliminated with half-lives of distribution (t1/2α) and elimination (t1/2β) of 0.238 and 2.611 h, respectively. The volume of distribution was large with (Vdss) value of 1.499 L. The total body clearance (ClB) was 0.413 L/h. After i.m. bolus administration of the same dose, lornoxicam was moderately and completely absorbed in rabbits with an absorption half-life (t½ab) of 1.228 h with peak plasma concentration (Cmax) of 0.463 μg/mL attained at 1.512 h (Tmax) and systemic bioavailability of 99.79%. The elimination half-life following i.m. administration was 2.283 h. The extent of plasma protein binding percent was 98.9%. The study recommends the use of lornoxicam in rabbits because of its good pharmacokinetic profile indicated by good absorption, bioavailability and plasma concentrations.


2016 ◽  
Vol 4 (1) ◽  
pp. 93 ◽  
Author(s):  
Mohamed Aboubakr

The pharmacokinetic profile of cefotaxime following a single intravenous (IV) and intramuscular (IM) injection was studied in Muscovy ducks. Cefotaxime was given at a dose rate of 25 mg/kg b.wt. for both routes. After IV injection, the plasma levels of cefotaxime estimated at 0.08 h was 70.87 μg/ml, which declined gradually and cefotaxime was detected up to 10 h (0.59 μg/ml). The mean values of CL, Vdss and t1/2β of cefotaxime in muscovy ducks were 0.22 l/kg/h, 0.51 l/kg and 1.81 h, respectively. After IM injection, maximum plasma concentration (Cmax) was (14.72 μg/ml), time of maximal plasma concentration (tmax) was (2.3 h) and elimination half-life (t1/2el)was (1.77 h). Bioavailability following IM injection was 79.61%, and in vitro protein binding percent was 31.48%. A recommended IM dosage for cefotaxime in muscovy ducks would be 30 mg/kg b.wt., repeated at 12 h intervals will provide a therapeutic plasma concentrations exceeding the MIC≤0.5 µg/ml for most susceptible pathogens in ducks.


2020 ◽  
Vol 22 (12) ◽  
pp. 1184-1190
Author(s):  
Preston Smith ◽  
M Katherine Tolbert ◽  
Emily Gould ◽  
Alex Taylor ◽  
Heather Knych ◽  
...  

Objectives The aim of this study was to describe the pharmacokinetics of oral transmucosal (OTM) detomidine gel in healthy cats and assess its effects on sedation and hemodynamic variables. Methods Eight adult cats weighing 4.12 kg ± 0.72 received 4 mg/m2 detomidine gel onto the buccal mucosa. Level of sedation, heart rate (HR), blood pressure (BP) and respiratory rate ( f R) were assessed at predetermined intervals following administration. Blood samples for plasma detomidine concentrations and venous blood gas variables were collected from a medial saphenous catheter. Plasma detomidine concentrations were analyzed using ultra-high-pressure liquid chromatography with mass spectrometry detection, and pharmacokinetic estimates were obtained with compartmental methods. Data were analyzed using ANOVA and paired t-test or appropriate non-parametric tests. Results Sedation occurred in all cats, and was increased from baseline at 30 mins ( P <0.001). Decreases in HR occurred from 15–60 mins, ranging from 140 to 165 beats per min ( P <0.001). Blood glucose increased from 101 ± 12 mg/dl to 168 ± 27.3 mg/dl at 60 mins ( P = 0.004). Systolic blood pressure decreased from baseline (139 ± 14.8 mmHg) to 103 ± 23.0 mmHg at 60 mins ( P = 0.023). All changes abated by 120 mins. Emesis occurred in 7/7 cats within 2 mins of gel administration. Geometric mean (coefficient of variation) for clearance was 220.7 ml/min/kg (35.3 ml/min/kg), volume of distribution was 14.9 l/kg (39.9 l/kg) (both a function of bioavailability) and elimination half-life was 46.9 mins (16.0 mins). Maximum plasma concentrations of 10.5 ng/ml (35.5 ng/ml) detomidine occurred at 36.9 mins (21.5 mins). Conclusions and relevance OTM detomidine gel produced moderate sedation with minimal undesirable side effects in healthy cats, although emesis occurred in all cats. The pharmacokinetic profile supports short-term, minimally invasive sedation in this species. Further studies are warranted to assess its safety and feasibility for use in debilitated cats, or prior to general anesthesia.


2016 ◽  
Vol 4 (1) ◽  
pp. 12 ◽  
Author(s):  
Hanady AwadAllah ◽  
Shaban Awidat ◽  
Abubakr El-Mahmoudy

<p>The pharmacokinetics of clarithromycin at a dose of 7.5 mg/kg body weight was evaluated after single intravenous (i.v.) and intracrop (i.c.) bolus administrations in broilers. An HPLC assay using pure clarithromycin base as a standard was used to measure its concentrations in plasma. Following an i.v. bolus injection, the plasma concentration-time curves of clarithromycin were best represented by two-compartment open models. The drug was rapidly distributed and moderately eliminated with half-lives of distribution (<em>t</em><sub>1/2α</sub>) and elimination (<em>t</em><sub>1/2β</sub>) of 0.38 and 4.58 h, respectively. The volume of distribution was large with (V<sub>dss</sub>) value of 6.89 L. The total body clearance (<em>Cl</em><sub>B</sub>) was 1.2 L/h. After i.c. bolus administration of the same dose, clarithromycin was moderately absorbed in broilers with an intermediate absorption half-life (<em>T</em><sub>½ab</sub>) of 0.72 h with peak plasma concentration (<em>C</em><sub>max</sub>) of 1.69 μg/ml attained at 1.7 h (<em>T</em><sub>max</sub>) and systemic bioavailability of 66.54%. The elimination half-life following i.c. administration was 2.11 h. The extent of plasma protein binding percent was 52%. The study recommends the use of clarithromycin in broilers because of its good pharmacokinetic profile indicated by good absorption, bioavailability and plasma concentrations ≥ MICs of many sensitive microorganisms.</p>


2020 ◽  
Vol 16 ◽  
Author(s):  
Xi He ◽  
Wenjun Hu ◽  
Fanhua Meng ◽  
Xingzhou Li

Background: The broad-spectrum antiparasitic drug nitazoxanide (N) has been repositioned as a broad-spectrum antiviral drug. Nitazoxanide’s in vivo antiviral activities are mainly attributed to its metabolitetizoxanide, the deacetylation product of nitazoxanide. In reference to the pharmacokinetic profile of nitazoxanide, we proposed the hypotheses that the low plasma concentrations and the low system exposure of tizoxanide after dosing with nitazoxanide result from significant first pass effects in the liver. It was thought that this may be due to the unstable acyloxy bond of nitazoxanide. Objective: Tizoxanide prodrugs, with the more stable formamyl substituent attached to the hydroxyl group rather than the acetyl group of nitazoxanide, were designed with the thought that they might be more stable in plasma. It was anticipated that these prodrugs might be less affected by the first pass effect, which would improve plasma concentrations and system exposure of tizoxanide. Method: These O-carbamoyl tizoxanide prodrugs were synthesized and evaluated in a mouse model for pharmacokinetic (PK) properties and in an in vitro model for plasma stabilities. Results: The results indicated that the plasma concentration and the systemic exposure of tizoxanide (T) after oral administration of O-carbamoyl tizoxanide prodrugs were much greater than that produced by equimolar dosage of nitazoxanide. It was also found that the plasma concentration and the systemic exposure of tizoxanide glucuronide (TG) were much lower than that produced by nitazoxanide. Conclusion: Further analysis showed that the suitable plasma stability of O-carbamoyl tizoxanide prodrugs is the key factor in maximizing the plasma concentration and the systemic exposure of the active ingredient tizoxanide.


1974 ◽  
Vol 12 (2) ◽  
pp. 6-8

Techniques are now available for estimating the plasma concentration of several drugs used in psychiatry. These techniques are clearly important for research but they can hardly be expected to improve the clinical management of patients unless the estimation is sensitive, reliable and reasonably quick; the method should be specific for the particular drug but should also specifically estimate any active metabolites. Even when reliable figures have been obtained, much more information is needed before they can be interpreted. The relationship between plasma (or plasma water) concentration and relevant tissue concentration (e. g. in the brain) must be known. Plasma samples should be taken at appropriate times, e. g. after the attainment of ‘steady-state’ conditions: plasma and tissue levels will then be in equilibrium. Diagnoses must be soundly based if inferences are to be drawn. Reliable methods of assessing clinical response must be available. These requirements pose difficult problems in psychiatry.


1998 ◽  
Vol 16 (7) ◽  
pp. 2494-2499 ◽  
Author(s):  
A M Langevin ◽  
D T Casto ◽  
P J Thomas ◽  
S D Weitman ◽  
C Kretschmar ◽  
...  

PURPOSE A phase I trial of 9-aminocamptothecin (9-AC) was performed in children with solid tumors to establish the dose-limiting toxicity (DLT), maximum-tolerated dose (MTD), and the pharmacokinetic profile in children and to document any evidence of activity. PATIENTS AND METHODS A 72-hour infusion of 9-AC dimethylacetamide formulation was administered every 21 days to 23 patients younger than 21 years of age with malignant tumors refractory to conventional therapy. Doses ranged from 36 to 62 microg/m2 per hour. Pharmacokinetics were to be performed in at least three patients per dose level. The first course was used to determine the DLT and MTD. RESULTS Nineteen patients on four dose levels were assessable for toxicities. At 62 microg/m2 per hour, three patients experienced dose-limiting neutropenia and one patient experienced dose-limiting thrombocytopenia. Pharmacokinetics were performed on 15 patients (nine patients had complete sets of plasma sampling performed). The pharmacokinetics of both lactone and total 9-AC were highly variable. The percentage of 9-AC lactone at steady-state was 10.8% +/- 3.6%. Total 9-AC and its lactone form had a terminal half-life of 8.1 +/- 3.8 and 7.1 +/- 3.9 hours, respectively, and a volume of distribution at steady-state (Vdss) of 21.2 +/- 13.3 L/m2 and 135.3 +/- 52.5 L/m2, respectively. Hepatic metabolism and biliary transport had an important role in 9-AC disposition. CONCLUSION The recommended phase II dose of 9-AC administered as a 72-hour infusion every 21 days to children with solid tumors is 52 microg/m2 per hour. Neutropenia and thrombocytopenia were dose limiting.


Sign in / Sign up

Export Citation Format

Share Document