Risk factors for high-altitude headache in mountaineers

Cephalalgia ◽  
2011 ◽  
Vol 31 (6) ◽  
pp. 706-711 ◽  
Author(s):  
Martin Burtscher ◽  
Klemens Mairer ◽  
Maria Wille ◽  
Gregor Broessner

Aim: The aim was to identify most relevant risk factors of high-altitude headache within a broad mountaineering population through a prospective, observational, rater-blinded study. Methods: A total of 506 mountaineers were enrolled after their first overnight stay in one of seven alpine huts between 2200–3817 m. Structured interview including information on mountaineering histories, caffeine intake, smoking habits, alcohol consumption, intake of medication, rate of ascent, physical fitness, the level of exertion and the amount of fluids intake at the day of ascent were recorded along with a standardized medical examination. Results: High-altitude headache occurred in 31% of study participants. Logistic regression analysis revealed a migraine history, low arterial oxygen saturation, high ratings of perceived exertion and fluid intake below 2 l to be independent risk factors for the development of high-altitude headache. Conclusion: Given the high prevalence, high-altitude headache is a relevant medical condition and a better understanding of risk factors has important impact and may facilitate patient behaviour and future study design.

2020 ◽  
Vol 120 (12) ◽  
pp. 2693-2704
Author(s):  
Erika Schagatay ◽  
Alexander Lunde ◽  
Simon Nilsson ◽  
Oscar Palm ◽  
Angelica Lodin-Sundström

Abstract Purpose Hypoxia and exercise are known to separately trigger spleen contraction, leading to release of stored erythrocytes. We studied spleen volume and hemoglobin concentration (Hb) during rest and exercise at three altitudes. Methods Eleven healthy lowlanders did a 5-min modified Harvard step test at 1370, 3700 and 4200 m altitude. Spleen volume was measured via ultrasonic imaging and capillary Hb with Hemocue during rest and after the step test, and arterial oxygen saturation (SaO2), heart rate (HR), expiratory CO2 (ETCO2) and respiratory rate (RR) across the test. Results Resting spleen volume was reduced with increasing altitude and further reduced with exercise at all altitudes. Mean (SE) baseline spleen volume at 1370 m was 252 (20) mL and after exercise, it was 199 (15) mL (P < 0.01). At 3700 m, baseline spleen volume was 231 (22) mL and after exercise 166 (12) mL (P < 0.05). At 4200 m baseline volume was 210 (23) mL and after exercise 172 (20) mL (P < 0.05). After 10 min, spleen volume increased to baseline at all altitudes (NS). Baseline Hb increased with altitude from 138.9 (6.1) g/L at 1370 m, to 141.2 (4.1) at 3700 m and 152.4 (4.0) at 4200 m (P < 0.01). At all altitudes Hb increased from baseline during exercise to 146.8 (5.7) g/L at 1370 m, 150.4 (3.8) g/L at 3700 m and 157.3 (3.8) g/L at 4200 m (all P < 0.05 from baseline). Hb had returned to baseline after 10 min rest at all altitudes (NS). The spleen-derived Hb elevation during exercise was smaller at 4200 m compared to 3700 m (P < 0.05). Cardiorespiratory variables were also affected by altitude during both rest and exercise. Conclusions The spleen contracts and mobilizes stored red blood cells during rest at high altitude and contracts further during exercise, to increase oxygen delivery to tissues during acute hypoxia. The attenuated Hb response to exercise at the highest altitude is likely due to the greater recruitment of the spleen reserve during rest, and that maximal spleen contraction is reached with exercise.


Occupational driving has often been associated with a high prevalence of pain in the neck, shoulder, wrist/hand, back and knee. The present study was undertaken to find out the prevalence of musculoskeletal disorders and associated risk factors among long-distance truck drivers from Allahabad, Uttar Pradesh. A cross-sectional study was conducted with 108 long-distance truck drivers. They were interviewed and examined as per a pre-designed, pre-tested semi-structured interview questionnaire. Results indicate that 78% of long-distance truck drivers had musculoskeletal disorder. The most common symptoms were low back pain (40%) followed by shoulder pain (26%), knee pain (24%), and neck pain (20%). Age, education, addiction, years of work experience, hours of driving were significantly associated with musculoskeletal morbidity (P&lt;0.001). Long-distance truck drivers with continued driving exposure have a high prevalence of a musculoskeletal disorder.


2018 ◽  
Vol 1 (3) ◽  
pp. 1-2
Author(s):  
Binod Aryal

Pregnancy is a special condition in a women’s life with unique physiological changes. There has been some research on physiological changes in human body in high altitude; however, there are many things still unknown about pregnancy at high altitude. It is an estimation that about 140 million people worldwide live in high altitude of above 2500 m, and it is believed that the hypobaric hypoxia of pregnancy at high altitude is the most common cause for maternofetal hypoxia. It has been seen that the babies born at high altitude are smaller, and the degree of smallness is inversely correlated with the number of generations of ancestors of high-altitude residence. Some studies show that women in populations with high-altitude ancestry, such as the Aymaras or Quechuas in South America and Tibetans in Asia, deliver heavier babies than women from European ancestry in South America or Han women in China living at high altitude. A study by Jensen and Moore shows that in Colorado, altitude acts as an independent factor in determining birth weight, with a reduction in birth weight of 100 g per 1000 m elevation gain. Studies have shown that low birth weight at high altitude has no association with socioeconomic status. Hence, it may reflect either hypoxia-induced intrauterine growth restriction or genetic adaptation. The latter implies a strong fetomaternal interaction involving adaptation to hypoxia on several levels. It also reflects the importance of interaction between the mother and the fetus which is stressed by the fact that better maternal ventilator response to hypoxic stress at high altitude correlates positively with birth weight. Another study shows that people living at altitudes of 4000 m and above have an arterial partial pressure of oxygen of 50 mmHg and an arterial oxygen saturation of just above 80%. There has been many studies on populations living in high-altitude regions for many generations, like Quechuas and Tibetans, which show many functional and structural adaptations in high altitude. This adaptation helps to allow for a way out for the main metabolic problem they face: maintaining an acceptably high scope for sustained aerobic metabolism despite reduced availability of oxygen in the inspired air. The functional adaptation to high altitude is measured indirectly by determining aerobic capacity, which reflects not only the maximum work performance but also the success of the individual’s biological oxygen transport system.


2021 ◽  
Vol 16 (1) ◽  
pp. 154-157
Author(s):  
Naoya Takei ◽  
Katsuyuki Kakinoki ◽  
Olivier Girard ◽  
Hideo Hatta

Background: Training in hypoxia versus normoxia often induces larger physiological adaptations, while this does not always translate into additional performance benefits. A possible explanation is a reduced oxygen flux, negatively affecting training intensity and/or volume (decreasing training stimulus). Repeated Wingates (RW) in normoxia is an efficient training strategy for improving both physiological parameters and exercise capacity. However, it remains unclear whether the addition of hypoxia has a detrimental effect on RW performance. Purpose: To test the hypothesis that acute moderate hypoxia exposure has no detrimental effect on RW, while both metabolic and perceptual responses would be slightly higher. Methods: On separate days, 7 male university sprinters performed 3 × 30-s Wingate efforts with 4.5-min passive recovery in either hypoxia (FiO2: 0.145) or normoxia (FiO2: 0.209). Arterial oxygen saturation was assessed before the first Wingate effort, while blood lactate concentration and ratings of perceived exertion were measured after each bout. Results: Mean (P = .92) and peak (P = .63) power outputs, total work (P = .98), and the percentage decrement score (P = .25) were similar between conditions. Arterial oxygen saturation was significantly lower in hypoxia versus normoxia (92.0% [2.8%] vs 98.1% [0.4%], P < .01), whereas blood lactate concentration (P = .78) and ratings of perceived exertion (P = .51) did not differ between conditions. Conclusion: In sprinters, acute exposure to moderate hypoxia had no detrimental effect on RW performance and associated metabolic and perceptual responses.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
R H Boeger ◽  
P Siques ◽  
J Brito ◽  
E Schwedhelm ◽  
E Pena ◽  
...  

Abstract Prolonged exposure to altitude-associated chronic hypoxia (CH) may cause high altitude pulmonary hypertension (HAPH). Chronic intermittent hypobaric hypoxia (CIH) occurs in individuals who commute between sea level and high altitude. CIH is associated with repetitive acute hypoxic acclimatization and conveys the long-term risk of HAPH. As nitric oxide (NO) is an important regulator of systemic and pulmonary vascular tone and asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis that increases in hypoxia, we aimed to investigate whether ADMA predicts the incidence of HAPH among Chilean frontiers personnel exposed to six months of CIH. We performed a prospective study of 123 healthy male subjects who were subjected to CIH (5 days at appr. 3,550 m, followed by 2 days at sea level) for six months. ADMA, SDMA, L-arginine, arterial oxygen saturation, systemic arterial blood pressure, and haematocrit were measured at baseline and at months 1, 4, and 6 at high altitude. Acclimatization to high altitude was determined using the Lake Louise Score and the presence of acute mountain sickness (AMS). Echocardiography was performed after six months of CIH in a subgroup of 43 individuals with either good (n=23) or poor (n=20) aclimatization to altitude, respectively. Logistic regression was used to assess the association of biomarkers with HAPH. 100 study participants aged 18.3±1.3 years with complete data sets were included in the final analysis. Arterial oxygen saturation decreased upon the first ascent to altitude and plateaued at about 90% during the further course of the study. Haematocrit increased to about 47% after one month and remained stable thereafter. ADMA continuously increased and SDMA decreased during the study course, whilst L-arginine levels showed no distinct pattern. The incidence of AMS and the Lake Louise Score were high after the first ascent (53 and 3.1±2.4, respectively) and at one month of CIH (47 and 3.0±2.6, respectively), but decreased to 20 and 1.4±2.0 at month 6, respectively (both p<0.001 for trend). In echocardiography, 18 participants (42%) showed a mean pulmonary arterial pressure (mPAP) greater than 25 mm Hg (mean ± SD, 30.4±3.9 mm Hg), out of which 9 (21%) were classified as HAPH (mPAP ≥30 mm Hg; mean ± SD, 33.9±2.2 mm Hg). Baseline ADMA, but not SDMA, was significantly associated with mPAP at month 6 in univariate logistic regression analysis (R = 0.413; p=0.007). In ROC analysis, a cut-off for baseline ADMA of 0.665 μmol/l was determined as the optimal cut-off level to predict HAPH (mPAP >30 mm Hg) with a sensitivity of 100% and a specificity of 63.6%. ADMA concentration increases during long-term CIH. It is an independent predictive biomarker for the incidence of HAPH. SDMA concentration decreases during CIH and shows no association with HAPH. Our data support a role of impaired NO-mediated pulmonary vasodilation in the pathogenesis of high altitude pulmonary hypertension. Acknowledgement/Funding CONICYT/FONDEF/FONIS Sa 09I20007; FIC Tarapaca BIP 30477541-0; BMBF grant 01DN17046 (DECIPHER); Georg & Jürgen Rickertsen Foundation, Hamburg


2013 ◽  
Vol 25 (5) ◽  
pp. 629-636 ◽  
Author(s):  
Emma Pomeroy ◽  
Jay T. Stock ◽  
Sanja Stanojevic ◽  
J. Jaime Miranda ◽  
Tim J. Cole ◽  
...  

2016 ◽  
Vol 121 (5) ◽  
pp. 1151-1159 ◽  
Author(s):  
Rodrigo Soria ◽  
Matthias Egger ◽  
Urs Scherrer ◽  
Nicole Bender ◽  
Stefano F. Rimoldi

More than 140 million people are living at high altitude worldwide. An increase of pulmonary artery pressure (PAP) is a hallmark of high-altitude exposure and, if pronounced, may be associated with important morbidity and mortality. Surprisingly, there is little information on the usual PAP in high-altitude populations. We, therefore, conducted a systematic review (MEDLINE and EMBASE) and meta-analysis of studies published (in English or Spanish) between 2000 and 2015 on echocardiographic estimations of PAP and measurements of arterial oxygen saturation in apparently healthy participants from general populations of high-altitude dwellers (>2,500 m). For comparison, we similarly analyzed data published on these variables during the same period for populations living at low altitude. Twelve high-altitude studies comprising 834 participants and 18 low-altitude studies (710 participants) fulfilled the inclusion criteria. All but one high-altitude studies were performed between 3,600 and 4,350 m. The combined mean systolic PAP (right ventricular-to-right atrial pressure gradient) at high altitude [25.3 mmHg, 95% confidence interval (CI) 24.0, 26.7], as expected was significantly (P < 0.001) higher than at low altitude (18.4 mmHg, 95% CI 17.1,19.7), and arterial oxygen saturation was significantly lower (90.4%, 95% CI 89.3, 91.5) than at low altitude (98.1%; 95% CI 97.7, 98.4). These findings indicate that at an altitude where the very large majority of high-altitude populations are living, pulmonary hypertension appears to be rare. The reference values and distributions for PAP and arterial oxygen saturation in apparently healthy high-altitude dwellers provided by this meta-analysis will be useful to future studies on the adjustments to high altitude in humans.


2008 ◽  
Vol 9 (2) ◽  
pp. 167-178 ◽  
Author(s):  
Abigail W. Bigham ◽  
Melisa Kiyamu ◽  
Fabiola León-Velarde ◽  
Esteban J. Parra ◽  
Maria Rivera-Ch ◽  
...  

2009 ◽  
Vol 106 (2) ◽  
pp. 454-460 ◽  
Author(s):  
Martina M. Bosch ◽  
Tobias M. Merz ◽  
Daniel Barthelmes ◽  
Benno L. Petrig ◽  
Frederic Truffer ◽  
...  

Little is known about the ocular and cerebral blood flow during exposure to increasingly hypoxic conditions at high altitudes. There is evidence that an increase in cerebral blood flow resulting from altered autoregulation constitutes a risk factor for acute mountain sickness (AMS) and high-altitude cerebral edema (HACE) by leading to capillary overperfusion and vasogenic cerebral edema. The retina represents the only part of the central nervous system where capillary blood flow is visible and can be measured by noninvasive means. In this study we aimed to gain insights into retinal and choroidal autoregulatory properties during hypoxia and to correlate circulatory changes to symptoms of AMS and clinical signs of HACE. This observational study was performed within the scope of a high-altitude medical research expedition to Mount Muztagh Ata (7,546 m). Twenty seven participants underwent general and ophthalmic examinations up to a maximal height of 6,800 m. Examinations included fundus photography and measurements of retinal and choroidal blood flow, as well as measurement of arterial oxygen saturation and hematocrit. The initial increase in retinal blood velocity was followed by a decrease despite further ascent, whereas choroidal flow increase occurred later, at even higher altitudes. The sum of all adaptational mechanisms resulted in a stable oxygen delivery to the retina and the choroid. Parameters reflecting the retinal circulation and optic disc swelling correlated well with the occurrence of AMS-related symptoms. We demonstrate that sojourns at high altitudes trigger distinct behavior of retinal and choroidal blood flow. Increase in retinal but not in choroidal blood flow correlated with the occurrence of AMS-related symptoms.


Sign in / Sign up

Export Citation Format

Share Document