scholarly journals Split Models for Predicting Multivehicle Crashes during High-Speed and Low-Speed Operating Conditions on Freeways

Author(s):  
Mohamed Abdel-Aty ◽  
Nizam Uddin ◽  
Anurag Pande

The future of traffic management and highway safety lies in proactive traffic management systems. Crash prediction models that use real-time traffic flow variables measured through a series of loop detectors are the most important component of such systems. A previous crash prediction model was developed with the matched case–control logistic regression technique. Although the model achieved reasonable classification accuracy, it remained open to improvement because of the limited study area, sample size, and transferability issues. Therefore, the previous work had been extended. Multivehicle freeway crashes under high- and low-speed traffic conditions were found to differ in severity and in their mechanism. The distribution of 5-min average speeds obtained immediately before the crash from the loop detector station closest to the crash shows two approximate mound-shaped distributions. This distribution is used as the basis to separate the models for crashes occurring under the two speed conditions. The results show that, as expected, variables that entered in the final models (for crashes under high and low speeds) were not the same. However, they were found to be consistent with the probable mechanisms of crashes under the respective speed conditions. A possible implementation of the separate models with the use of the odds ratios and with the balancing of the threshold between achieving high classification of crash potential and the false alarm situation is presented.

1998 ◽  
Vol 120 (3) ◽  
pp. 393-401 ◽  
Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms in a low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short length-scale disturbance known as a “spike,” and the second with a longer length-scale disturbance known as a “modal oscillation.” In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented that relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: Long length-scale disturbances are related to a two-dimensional instability of the whole compression system, while short length-scale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed that explains the type of stall inception pattern observed in a particular compressor. Measurements from a single-stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms a in low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short lengthscale disturbance known as a ‘spike’, and the second with a longer lengthscale disturbance known as a ‘modal oscillation’. In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented which relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: long lengthscale disturbances are related to a two-dimensional instability of the whole compression system, while short lengthscale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed which explains the type of stall inception pattern observed in a particular compressor. Measurements from a single stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


Author(s):  
Karthik K. Srinivasan ◽  
Paul P. Jovanis

Several intelligent vehicle–highway system demonstration projects are currently assessing the feasibility of using probe vehicles to collect realtime traffic data for advanced traffic management and information systems. They have used a variety of criteria to determine the number of probes necessary, but few generalizable algorithms have been developed and tested. The described algorithm explicitly considers the time period for travel time estimation (e.g., 5, 10, or 15 min), the number of replications of travel time desired for each link during each measurement period (reliability criterion), the proportion of links to be covered, and the length of the peak period. This algorithm is implemented by using a simulation of the Sacramento Network (170 mi2) for the morning peak period. The results indicate that the number of probe vehicles required increases non-linearly as the reliability criterion is made more stringent. More probes are required for shorter measurement periods. As the desired proportion of link coverage in the network increases, the number of probes required increases. With a given number of probes a greater proportion of freeway links than of major arterials can reliably be covered. Probe vehicles appear to be an attractive source of real-time traffic information in heavily traveled, high-speed corridors such as freeways and major arterials during peak periods, but they are not recommended for coverage of minor arterials or local and collector streets or during off-peak hours.


Author(s):  
Douglas E. Chappel ◽  
Ly Vo ◽  
Harold W. Howe

Abradable seals have long been used to enhance turbomachinery performance by limiting blade tip leakage losses. Most of the literature regarding this subject has focused on aerospace gas turbine materials and conditions. Furthermore, testing and evaluation described in this literature has been conducted on disparate rigs, making direct comparison among the abradable materials investigated difficult. This study broadens the scope of available data by evaluating fibermetal, thermal-sprayed and honeycomb abradable materials at conditions found in utility gas turbine compressors and steam turbines. High speed rub interaction, low speed rub interaction and erosion data were collected and are discussed in detail.


2014 ◽  
Vol 59 (4) ◽  
pp. 17-35 ◽  
Author(s):  
Mihir Mistry ◽  
Farhan Gandhi

This paper examines rotor power reductions achievable through a combination of radius and RPM variation. The study is based on a utility helicopter similar to the UH-60A and considers +17% to –16% variation in radius and ±11% variation in RPM about the baseline, over a range of airspeed, gross weight, and altitude. Results show that decreasing RPM alone effectively reduced power at cruise velocities in low-and-light conditions, but the power reductions diminished at increasing altitude and/or gross weight, and in low-speed flight. Increasing radius alone, on the other hand, had greatest effectiveness in power reduction in high-and-heavy operating conditions and at lower flight speeds. When radius and RPM variation is used in combination, minimum RPM is always favored, along with radius increases at increasing altitude and gross weight, and in low-speed operation. At low-to-moderate gross weight, the significant power reductions seen in cruise and at low altitude with RPM variation alone are obtained even at higher altitude, and over the airspeed range, using radius and RPM variation in combination. In high-and-heavy conditions, the combination of RPM reduction and radius increase yields very large power reductions of over 20% and up to 30% over the baseline. Power reduction in low-and-light conditions comes almost entirely from profile power reduction due to RPM decrease. In cruise and high-speed flight, the profile power reductions progressively give way to induced power reductions at increasing gross weight and altitude. At low speeds, reduction in induced power due to increased radius and decreased disk loading dominates.


Author(s):  
Shiyou Yang ◽  
Kangyao Deng ◽  
Yi Cui ◽  
Hongzhong Gu

A new turbocharging system, named automatically variable intake exhaust injection timing (AVIEIT), is proposed. Its main purpose is to improve the performance of low-speed high torque operating conditions and improve the economy of high-speed operating conditions for high-speed supercharged intercooled diesel engines. The principle of the AVIEIT turbocharging system is presented. A control mechanism for the proposed AVIEIT system used for a truck diesel engine is introduced. An engine simulation code has been developed. In this code, a zero-dimensional in-cylinder combustion model, a one-dimensional finite volume method-total variation diminishing model for unsteady gas flow in the intake and exhaust manifolds, and a turbocharger model are used. The developed code is used to simulate the performances of diesel engines using the AVIEIT system. Simulations of a military use diesel engine “12V150” and a truck diesel engine “D6114” using the AVIEIT system have been performed. Simulation results show that the in-cylinder charge air amount of the diesel engine with the AVIEIT system is increased at low-speed high torque operating conditions, and the fuel economy is improved at high-speed operating conditions. In order to test the idea of the AVIEIT system, an experiment on a truck diesel engine D6114 equipped with an AVIEIT control mechanism has been finished. The experiment results show that the AVIEIT system can improve the economy of high-speed operating conditions. Both the simulation and experiment results suggest that the AVIEIT system has the potential to replace the waste-gate and variable geometry turbocharger turbocharging systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tian Lei ◽  
Jia Peng ◽  
Xingliang Liu ◽  
Qin Luo

Real-time crash prediction helps identify and prevent the occurrence of traffic crash. For years, various real-time crash prediction models have been investigated to provide effective information for proactive traffic management. When building real-time crash prediction model, a suitable variable space together with a specific time interval for traffic data aggregation and an appropriate modelling algorithm should be applied. Regarding the intercorrelation problem with variable space, comprehensive real-time crash prediction model considering available traffic data characteristics in applicable circumstances needs to be explored. Taking Xi’an G3001 Expressway as study area, real road traffic and accident data during the period from January 2014 to January 2019 on this expressway are applied for real-time crash prediction. To better capture traffic flow characteristics on expressway and improve the practicality of real-time crash prediction model, two new variables (segment difference coefficient and lane difference coefficient) describing the smoothness and continuity of traffic flow in spatial dimension are developed and incorporated in building the crash prediction model to solve the intercorrelation problem with variable space. Random forest (RF) is then adopted to specify the quantitative relationship between specific variable and crash risk. Real-time crash prediction model based on support vector machine (SVM) using new composed variable space is built. The results show that simplified variable space could contribute to the same classification power in currently used real-time crash prediction models compared with traditional variable space. Moreover, the prediction model based on SVM reaches an accuracy level of 0.9, which performs better than other currently used prediction models.


Author(s):  
Weimin Wang ◽  
Jinji Gao ◽  
Ya Zhang ◽  
Jianfei Yao

Rotor may physically contacts with stationary elements of a rotating machine, and the subsequent rubbing at the contact area is a serious malfunction in rotating machinery that may lead to the machine’s catastrophic failure. Usually, it is deemed as a secondary phenomenon resulting from a primary cause which perturbs the machine during normal operating conditions. Generally, there are two types of rubs, i.e., radial rub and axial rub. In this paper, the dynamic response of a rotor system with two types of rubs and unbalances is investigated numerically. Then, characteristics of dynamic behavior for both types of rubs could be achieved. It indicates that symptoms of axial rub are similar with that of unbalance, where 1X vibration is the main component in FFT results. While, radial rub will result 0.5X and 1X vibration in FFT result. Combing a troubleshooting process of a steam turbine in an ammonia plant and field test data, the numerical results are confirmed furthermore although there are some differences in vibration characteristics between numerical results and field test results. Under axial rub impact, the fault force emerges even at low speed. Its spectrum characteristics are more like those of radial rub impact at low speed and more like those of unbalance at high speed. On these bases, methods of preventing rub-impact faults as the machine operating are presented and investigated theoretically focusing on how to exert external forces to counteract those forces resulting from rubbing. Experimental investigations are conducted and their results indicate that the method presented in this paper is useful and feasible.


Author(s):  
Boris Claros ◽  
Carlos Sun ◽  
Praveen Edara

The Highway Safety Manual (HSM) provides guidance and tools to conduct quantitative safety analysis. Crash prediction models are used to estimate the expected number of crashes per year, by facility type, severity, and crash type. There are two approaches for applying the HSM crash prediction methodology to local conditions: (1) calibration of models provided in the HSM; or (2) development of jurisdiction-specific models. There are some instances in which model calibration may not be appropriate. To illustrate this case, 601 urban signalized four-leg intersections (U4SG) in Missouri were used to obtain the calibration factor, assess the quality of the calibration factor, and develop jurisdiction-specific models. For U4SG total crashes, the calibration factor for Missouri conditions was 3.98 (standard deviation, 0.13). The assessment of the calibration factor showed a disproportional difference between the observed data in Missouri and the HSM model. Thus, the calibration was deemed inappropriate and the development of Missouri-specific models was supported. The models were developed for severities Fatal and Injury (FI) and Property Damage Only (PDO) crashes. The predictor variables considered were intersection AADT, posted speed limit, signal control type, exclusive left turn lanes, exclusive right turn lanes, right turn on red prohibited, and facilities of interest within 1,000 ft from the intersection (bus stops, schools, and alcohol sale establishments). Functional forms for all predictor variables were optimized. The log-likelihood, inverse overdispersion, and Cumulative Residuals (CURE) plots showed satisfactory measures of model accuracy.


Sign in / Sign up

Export Citation Format

Share Document