Gas Path Blade Tip Seals: Abradable Seal Material Testing at Utility Gas and Steam Turbine Operating Conditions

Author(s):  
Douglas E. Chappel ◽  
Ly Vo ◽  
Harold W. Howe

Abradable seals have long been used to enhance turbomachinery performance by limiting blade tip leakage losses. Most of the literature regarding this subject has focused on aerospace gas turbine materials and conditions. Furthermore, testing and evaluation described in this literature has been conducted on disparate rigs, making direct comparison among the abradable materials investigated difficult. This study broadens the scope of available data by evaluating fibermetal, thermal-sprayed and honeycomb abradable materials at conditions found in utility gas turbine compressors and steam turbines. High speed rub interaction, low speed rub interaction and erosion data were collected and are discussed in detail.

1988 ◽  
Vol 110 (2) ◽  
pp. 173-180
Author(s):  
R. Maier ◽  
J. Wachter

In exhaust diffusers of steam turbines pressure oscillations may occur at certain operating conditions, due to shock–boundary layer interactions. These self-excited flow oscillations are caused by the high-speed clearance flow between blade tip and outer contour, leading to an excitation of the running blades. The paper describes the behavior of this unsteady flow phenomenon in the diffuser, identified with steady state and unsteady measurements at the wall, along with probe measurements behind the runner blading. A deeper physical understanding was gained by simulation of this flow pattern on the base of the water analogy.


Author(s):  
Deqi Yu ◽  
Xiaojun Zhang ◽  
Jiandao Yang ◽  
Kai Cheng ◽  
Weilin Shu ◽  
...  

Fir-tree root and groove profiles are widely used in gas turbine and steam turbine. Normally, the fir-tree root and groove are characterized with straight line, arc or even elliptic fillet and splines, then the parameters of these features were defined as design variables to perform root profile optimization. In ultra-long blades of CCPP and nuclear steam turbines and high-speed blades of industrial steam turbine blades, both the root and groove strength are the key challenges during the design process. Especially, in industrial steam turbines, the geometry of blade is very small but the operation velocity is very high and the blade suffers stress concentration severely. In this paper, two methods for geometry configuration and relevant optimization programs are described. The first one is feature-based using straight lines and arcs to configure the fir-tree root and groove geometry and genetic algorithm for optimization. This method is quite fit for wholly new root and groove design. And the second local optimization method is based on B-splines to configure the geometry where the local stress concentration occurs and the relevant optimization algorithm is used for optimization. Also, several cases are studied as comparison by using the optimization design platform. It can be used not only in steam turbines but also in gas turbines.


Author(s):  
Thomas Mosbach ◽  
Victor Burger ◽  
Barani Gunasekaran

The threshold combustion performance of different fuel formulations under simulated altitude relight conditions were investigated in the altitude relight test facility located at the Rolls-Royce plc. Strategic Research Centre in Derby, UK. The combustor employed was a twin-sector representation of an RQL gas turbine combustor. Eight fuels including conventional crude-derived Jet A-1 kerosene, synthetic paraffinic kerosenes (SPKs), linear paraffinic solvents, aromatic solvents and pure compounds were tested. The combustor was operated at sub-atmospheric air pressure of 41 kPa and air temperature of 265 K. The temperature of all fuels was regulated to 288 K. The combustor operating conditions corresponded to a low stratospheric flight altitude near 9 kilometres. The experimental work at the Rolls-Royce (RR) test-rig consisted of classical relight envelope ignition and extinction tests, and ancillary optical measurements: Simultaneous high-speed imaging of the OH* chemiluminescence and of the soot luminosity was used to visualize both the transient combustion phenomena and the combustion behaviour of the steady burning flames. Flame luminosity spectra were also simultaneously recorded with a spectrometer to obtain information about the different combustion intermediates and about the thermal soot radiation curve. This paper presents first results from the analysis of the weak extinction measurements. Further detailed test fuel results are the subject of a separate complementary paper [1]. It was found in general that the determined weak extinction parameters were not strongly dependent on the fuels investigated, however at the leading edge of the OH* chemiluminescence intensity development in the pre-flame region fuel-related differences were observed.


Author(s):  
Jindrich Liska ◽  
Vojtech Vasicek ◽  
Jan Jakl

Ensuring the reliability of the steam turbine is the key for its long life. For this purpose monitoring systems are standardly used. Early detection of any failure can avoid possible economical and material losses. A monitoring of rotating blades vibration belongs to the very important tasks of the turbomachinery state assessment. Especially in terms of the last stages of low-pressure part, where the longest blades are vibrating at most. Commonly used methods for blade vibration monitoring are based on contact measurement using strain gauges or non-contact approach based on blade tip timing measurement. Rising demand for low-cost monitoring systems has initiated development of a new approach in blade vibration monitoring task. The presented approach is based on usage of relative rotor vibration signals. Its advantage is in using of standardly installed sensors making this approach economically interesting for the turbine operators compared to the traditionally used methods, mentioned above. This paper summarizes the symptoms of blade vibration phenomenon in relative shaft vibration signals, the impact of operating conditions on the blade vibration amplitude and its comparison to blade tip-timing measurement results. In addition of several examples, the article also describes an evaluation of proposed method in operation of steam turbine with power of 170MW.


Aerospace ◽  
2019 ◽  
Vol 6 (5) ◽  
pp. 55 ◽  
Author(s):  
James Large ◽  
Apostolos Pesyridis

In this study, the on-going research into the improvement of micro-gas turbine propulsion system performance and the suitability for its application as propulsion systems for small tactical UAVs (<600 kg) is investigated. The study is focused around the concept of converting existing micro turbojet engines into turbofans with the use of a continuously variable gearbox, thus maintaining a single spool configuration and relative design simplicity. This is an effort to reduce the initial engine development cost, whilst improving the propulsive performance. The BMT 120 KS micro turbojet engine is selected for the performance evaluation of the conversion process using the gas turbine performance software GasTurb13. The preliminary design of a matched low-pressure compressor (LPC) for the proposed engine is then performed using meanline calculation methods. According to the analysis that is carried out, an improvement in the converted micro gas turbine engine performance, in terms of thrust and specific fuel consumption is achieved. Furthermore, with the introduction of a CVT gearbox, the fan speed operation may be adjusted independently of the core, allowing an increased thrust generation or better fuel consumption. This therefore enables a wider gamut of operating conditions and enhances the performance and scope of the tactical UAV.


2004 ◽  
Vol 128 (2) ◽  
pp. 213-220 ◽  
Author(s):  
Nicole L. Key ◽  
Tony Arts

The tip leakage flow characteristics for flat and squealer turbine tip geometries are studied in the von Karman Institute Isentropic Light Piston Compression Tube facility, CT-2, at different Reynolds and Mach number conditions for a fixed value of the tip gap in a nonrotating, linear cascade arrangement. To the best knowledge of the authors, these are among the very few high-speed tip flow data for the flat tip and squealer tip geometries. Oil flow visualizations and static pressure measurements on the blade tip, blade surface, and corresponding endwall provide insight to the structure of the two different tip flows. Aerodynamic losses are measured for the different tip arrangements, also. The squealer tip provides a significant decrease in velocity through the tip gap with respect to the flat tip blade. For the flat tip, an increase in Reynolds number causes an increase in tip velocity levels, but the squealer tip is relatively insensitive to changes in Reynolds number.


Author(s):  
Zhibo Zhang ◽  
Xianjun Yu ◽  
Baojie Liu

The detailed evolutionary processes of the tip leakage flow/vortex inside the rotor passage are still not very clear for the difficulties of investigating of them by both experimental and numerical methods. In this paper, the flow fields near the rotor tip region inside the blade passage with two tip gaps, 0.5% and 1.5% blade height respectively, were measured by using stereoscopic particle image velocimetry (SPIV) in a large-scale low speed axial compressor test facility. The measurements are conducted at four different operating conditions, including the design, middle, maximum static pressure rise and near stall conditions. In order to analyze the variations of the characteristics of the tip leakage vortex (TLV), the trajectory, concentration, size, streamwise velocity, and the blockage parameters are extracted from the ensemble-averaged results and compared at different compressor operating conditions and tip gaps. The results show that the formation of the TLV is delayed with large tip clearance, however, its trajectory moves much faster in an approximately linear way from the blade suction side to pressure side. In the tested compressor, the size of the tip gap has little effects on the scale of the TLV in the spanwise direction, on the contrary, its effects on the pitch-wise direction is very prominent. Breakdown of the TLV were both found at the near-stall condition with different tip gaps. The location of the initiation of the TLV breakdown moves downstream from the 60% chord to 70% chord as the tip gap increases. After the TLV breakdown occurs, the flow blockage near the rotor tip region increases abruptly. The peak value of the blockage effects caused by the TLV breakdown is doubled with the tip gap size increasing from 0.5% to 1.5% blade span.


1998 ◽  
Vol 120 (3) ◽  
pp. 393-401 ◽  
Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms in a low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short length-scale disturbance known as a “spike,” and the second with a longer length-scale disturbance known as a “modal oscillation.” In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented that relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: Long length-scale disturbances are related to a two-dimensional instability of the whole compression system, while short length-scale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed that explains the type of stall inception pattern observed in a particular compressor. Measurements from a single-stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms a in low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short lengthscale disturbance known as a ‘spike’, and the second with a longer lengthscale disturbance known as a ‘modal oscillation’. In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented which relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: long lengthscale disturbances are related to a two-dimensional instability of the whole compression system, while short lengthscale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed which explains the type of stall inception pattern observed in a particular compressor. Measurements from a single stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Hongmei Jiang ◽  
Li He ◽  
Qiang Zhang ◽  
Lipo Wang

Modern high-pressure turbine blades operate at high-speed conditions. The over-tip-leakage (OTL) flow can be high-subsonic or even transonic. From the consideration of problem simplification and cost reduction, the OTL flow has been studied extensively in low-speed experiments. It has been assumed a redesigned low-speed blade profile with a matched blade loading should be sufficient to scale the high-speed OTL flow down to the low-speed condition. In this paper, the validity of this conventional scaling approach is computationally examined. The computational fluid dynamics (CFD) methodology was first validated by experimental data conducted in both high- and low-speed conditions. Detailed analyses on the OTL flows at high- and low-speed conditions indicate that, only matching the loading distribution with a redesigned blade cannot ensure the match of the aerodynamic performance at the low-speed condition with that at the high-speed condition. Specifically, the discrepancy in the peak tip leakage mass flux can be as high as 22%, and the total pressure loss at the low-speed condition is 6% higher than the high-speed case. An improved scaling method is proposed hereof. As an additional dimension variable, the tip clearance can also be “scaled” down from the high-speed to low-speed case to match the cross-tip pressure gradient between pressure and suction surfaces. The similarity in terms of the overall aerodynamic loss and local leakage flow distribution can be improved by adjusting the tip clearance, either uniformly or locally.


Sign in / Sign up

Export Citation Format

Share Document