Reliability of Piezocone Penetration Test Methods for Estimating the Coefficient of Consolidation of Cohesive Soils

Author(s):  
Murad Y. Abu-Farsakh ◽  
Munir D. Nazzal

The current piezocone penetration test (PCPT) interpretation methods were evaluated for their capability to estimate the vertical coefficient of consolidation (c v) of cohesive soils reasonably by using the piezocone dissipation tests. Seven PCPT methods were evaluated. Six sites in Louisiana were selected for this study. At each site, in situ PCPT tests were performed, and soundings of cone tip resistance, sleeve friction, and pore pressures at different locations were recorded. Piezocone dissipation tests also were conducted at different penetration depths. High-quality Shelby tube samples were collected close to the PCPT tests and were used to carry out a comprehensive laboratory testing program. The (c v) values predicted by the different interpretation methods were compared with the reference values determined from the oedometer laboratory tests. The results of this study showed that two methods can estimate cv better than the other prediction methods.

2018 ◽  
Vol 40 (2) ◽  
pp. 117-124 ◽  
Author(s):  
Zb. Młynarek ◽  
J. Wierzbicki ◽  
W. Wołyński

AbstractThis paper shows an example of the grouping of piezocone penetration test (CPTU) characteristics using functional data analysis, together with the results of clustering, in the form of a subsoil rigidity model. The subsoil rigidity model was constructed based on layer separation using the proposed method, as well as the k-means method. In the construction of the subsoil rigidity model, the constrained modulus M was applied. These moduli were determined from empirical relationships for overconsolidated and normally consolidated soils from Poland based on cone tip resistance.


2021 ◽  
Vol 6 (3) ◽  
pp. 32
Author(s):  
Binyam M. Bekele ◽  
Chung R. Song ◽  
Gyunam Jin ◽  
Mark Lindemann

Overconsolidated (OC) soils may develop a low or negative pore pressure during PCPT. Thus, it is challenging to develop an “on-the-fly” estimation of hydraulic conductivity from PCPT results. This study presents a method to estimate the hydraulic conductivity of OC soils from PCPT results based on a previously developed method for normally consolidated (NC) soils. To apply the existing method, PCPT pore pressure in OC soils is adjusted by using a correction factor. An equation for the correction factor is derived based on the concepts of critical state soil mechanics, cavity expansion, and consolidation theories. Then, it was reformulated so that traditional cone indices could be used as input parameters. It is shown that the correction factor is mainly influenced by the cone tip resistance, pore pressure, and the rigidity index. The comparison of predicted, which is based on corrected pore pressure and measured hydraulic conductivity showed a good match for four well documented data sets. With the findings of the study, it is expected that an “on-the-fly” estimation of hydraulic conductivity of overconsolidated soils is possible.


2012 ◽  
Vol 170-173 ◽  
pp. 945-949
Author(s):  
Jun Hai Li

In geotechnical engineering, assessment of the depth location of stratigraphic interfaces and the depth and thickness of thin layers can be critical in the design process. For example, stratigraphic interfaces can promote anisotropic soil strength response and potentially provide preferential slip planes that create slope instability. Similarly, the presence of thin, high permeability layers can alter groundwater flow regimes and rates of consolidation, which can hinder or accelerate methods of ground improvement. The piezocone penetration test (PCPT or CPTU) is an extension of the cone penetration test (CPT) and is able to measure cone tip resistance, sleeve friction and generated pore-water pressures simultaneously. The piezocone’s functionality is through the measured excess pore pressure profile, which reflects changes in the drainage conditions, and therefore soil conditions. In this paper the relationship between CPTU parameters and soil types and strata is analyzed, and the structure of a general regression neural network (GRNN) is designed, and the application program is programmed with MATLAB language. The results, identifying soil strata by CPTU, have confirmed that GRNN can be used to carry out the automatically identifying soil strata.


2010 ◽  
Vol 97-101 ◽  
pp. 814-817 ◽  
Author(s):  
Jun Deng

One of the greatest drawbacks to predicting the behaviour of bonded joints has been the lack of reliable data on the mechanical properties of adhesives. In this study, methods for determining mechanical properties of structural adhesive were discussed. The Young’s modulus, Poisson’s ratio and tensile strength of the adhesive were tested by dogbone specimens (bulk form) and butt joint specimens (in situ form). The shear modulus and shear strength were test by V-notched specimens (bulk form) and thick adherend lap-shear (TALS) joint specimens (in situ form). The test results show that the elastic modulus provided by the manufacturer is too low, the dogbone specimen is better than the butt joint specimen to test the tensile strength and elastic modulus and the TALS joint specimen is better than the V-notched specimen to test the shear strength.


2011 ◽  
Vol 90-93 ◽  
pp. 217-221
Author(s):  
Jin Long Zhou ◽  
Qiao Li ◽  
Wei Zhong Cai

Through the investigation into composition of major shallow foundation soil mass and the correlation of mechanical indicators in this study, the regression equation of mechanical indicators of the features of local foundation soil mass and the data of in situ testing was obtained. Based on massive quantities of exploration materials, this study analyzed engineering features, distribution status, and the feasibility of silty clay to be used as the bearing layer of the pile in Layer ④2 . The analytical results showed that the silty clay with the uniform depth of over 3.5m and the cone tip resistance in static sounding of over 400MPa could be used as bearing layer of the pile. This study could provide the reference for the accurate understanding of the engineering features of soil mass, and the design and evaluation of foundation in Jiaxing City.


Author(s):  
Murad Y. Abu-Farsakh ◽  
Zhongjie Zhang ◽  
Mehmet Tumay ◽  
Mark Morvant

Computerized MS-Windows Visual Basic software of a cone penetration test (CPT) for soil classification was developed as part of an extensive effort to facilitate the implementation of CPT technology in many geotechnical engineering applications. Five CPT soil engineering classification systems were implemented as a handy, user-friendly, software tool for geotechnical engineers. In the probabilistic region estimation and fuzzy classification methods, a conformal transformation is first applied to determine the profile of soil classification index (U) with depth from cone tip resistance (qc) and friction ratio (Rf). A statistical correlation was established in the probabilistic region estimation method between the U index and the compositional soil type given by the Unified Soil Classification System. Conversely, the CPT fuzzy classification emphasizes the certainty of soil behavior. The Schmertmann and Douglas and Olsen methods provide soil classification charts based on cone tip resistance and friction ratio. However, Robertson et al. proposed a three-dimensional classification system that is presented in two charts: one chart uses corrected tip resistance (qt) and friction ratio (Rf); the other chart uses qt and pore pressure parameter (Bq) as input data. Five sites in Louisiana were selected for this study. For each site, CPT tests and the corresponding soil boring results were correlated. The soil classification results obtained using the five different CPT soil classification methods were compared.


1986 ◽  
Vol 23 (4) ◽  
pp. 573-594 ◽  
Author(s):  
P. K. Robertson

The status of in situ testing and its application to foundation engineering are presented and discussed. The in situ test methods are discussed within the framework of three groups: logging, specific, and combined test methods. The major logging test methods discussed are standard penetration test (SPT), cone penetration test (CPT), and the flat plate dilatometer test (DMT). The major specific test methods discussed are the prebored pressuremeter test (PMT), the self-bored pressuremeter test (SBPMT), and the screw plate load test (SPLT). Discussion is also presented on recent tests that combine features of logging tests (using the CPT) and specific tests (e.g. the seismic, the electrical resistivity/dielectric, and the lateral stress sensing cone penetration tests). A brief discussion is also presented on the applicability, as perceived by the author, of existing in situ test methods and the future of in situ testing applied to foundation engineering. Key words: in situ testing, foundation engineering, penetration testing, pressuremeter.


1995 ◽  
Vol 11 (3) ◽  
pp. 431-455 ◽  
Author(s):  
Steven D. Glaser ◽  
Riley M. Chung

This report examines the state-of-the-art of in situ methods of estimating liquefaction potential in sands. In situ methods are especially important since “undisturbed” samples of loose sand for laboratory testing are virtually unobtainable. Various penetration test methods are examined, such as the SPT, DMT, and the CPT and variants. These methods are completely empirical in nature, and have worked well to date. The current state-of-practice is an SPT-based method. Intrusive, seismic-based tests are also examined: the cross-hole, down-hole tests, and down-hole logger. The seismic velocity-based predictors have a stronger physical basis than the penetration test-based estimation methods, but need a larger database. A non-intrusive test, the Spectral Analysis of Surface Waves technique, seems especially suited for examining sites of large areal extent.


Author(s):  
Pradeep U. Kurup ◽  
Mehmet T. Tumay

The electronic cone penetrometer is an important in situ investigation tool of choice for site characterization. Application of this proven concept of the cone penetration test (CPT) to highway design and construction control by miniaturization is described. A miniature cone penetrometer with a projected cone area of 2 cm2 has been developed and implemented in a continuous intrusion miniature cone penetration test system (CIMCPT). This device may be used for rapid, accurate, and economical characterization of sites and to determine engineering soil parameters needed in the design of pavements, embankments, and earth structures. The miniature cone penetration test (MCPT) gives finer details than the standard 10-cm2 cross-sectional area reference cone penetrometer. This makes the MCPT attractive for subgrade characterization, quality-control assessment, compaction control of embankments, and assessment of ground improvement effectiveness for transportation infrastructure. In situ calibration of the CIMCPT system was conducted at a highway embankment site in Baton Rouge, Louisiana. MCPT penetration profiles were compared with those obtained by using the standard cone penetrometer at the same site. The tip resistance of the MCPT was 10 percent higher than that of the reference CPT. The sleeve friction and friction ratio of the reference CPT were higher than that of the MCPT by 12 and 23 percent, respectively. Calibration was also performed to determine empirical cone factors required for estimating undrained shear strength from MCPT data.


Sign in / Sign up

Export Citation Format

Share Document