Capacity Modeling of Weaving Areas on Urban Expressways with Exclusive Bus Lanes Based on Gap Acceptance Theory

Author(s):  
Xumei Chen ◽  
Xiaomi Han ◽  
Xianchao Jia ◽  
Lei Yu ◽  
Tao Wan

Intense lane-changing maneuvers at weaving sections often cause traffic turbulence on expressways, especially in the presence of a concurrent medium exclusive bus lane (XBL) and general purpose lanes. Such intense lane-changing activity usually affects the operation and reduces the capacity of weaving sections in relation to their equivalent basic expressway segments. In this context, a study on the capacity model of weaving areas on an expressway with a median XBL is conducted based on the analysis of lane-change behaviors using gap acceptance theory. Two weaving sections on expressways with median XBL are selected as case studies to obtain the estimated capacity as well as the maximum traffic throughput under a certain bus saturation on the XBL. The results show that estimated capacity is larger than maximum traffic throughput because of low utilization rate of buses on the XBL, and capacity is significantly affected by weaving demand. Error measures based on the estimated and observed maximum traffic throughput are analyzed to verify the validity of the proposed model. A sensitivity analysis shows that, compared with the increase of on-ramp bus flow ratio, the increase of off-ramp bus flow ratio results in a more obvious trend of the reduction of capacity and maximum traffic throughput.

2011 ◽  
Vol 97-98 ◽  
pp. 121-129 ◽  
Author(s):  
Bing Hong Pan ◽  
Ling Chen Kong

According to traffic operation characteristics and lane changing maneuvers, combining with the export notice signs and considering the worst driving conditions, the gap acceptance theory and kinematics are employed to establish the length of lane change operation between interchanges with probability theory. To operating speed as the premise, the necessary length that drivers change to the inside lane from the nearside lane is analyzed in terms of waiting for the gap acceptance, and the necessary length that drivers change to the nearside lane from the inside lane is also analyzed in terms of running for the gap acceptance, then calculation model of minimum net distance between interchanges on eight-lane expressway is constructed. The recommended value is then put forward.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Jian Sun ◽  
Kang Zuo ◽  
Shun Jiang ◽  
Zuduo Zheng

Merging behavior is inevitable at on-ramp bottlenecks and is a significant factor in triggering traffic breakdown. In modeling merging behaviors, the gap acceptance theory is generally used. Gap acceptance theory holds that when a gap is larger than the critical gap, the vehicle will merge into the mainline. In this study, however, analyses not only focus on the accepted gaps, but also take the rejected gaps into account, and the impact on merging behavior with multi-rejected (more than once rejecting behavior) gaps was investigated; it shows that the multi-rejected gaps have a great influence on the estimation of critical gap and merging prediction. Two empirical trajectory data sets were collected and analyzed: one at Yan’an Expressway in Shanghai, China, and the other at Highway 101 in Los Angeles, USA. The study made three main contributions. First, it gives the quantitative measurement of the rejected gap which is also a detailed description of non-merging event and investigated the characteristics of the multi-rejected gaps; second, taking the multi-rejected gaps into consideration, it further expanded the concept of the “critical gap” which can be a statistic one and the distribution function of merging probability with respect to such gaps was analyzed by means of survival analysis. This way could make the full use of multi-rejected gaps and accepted gaps and reduce the sample bias, thus estimating the critical gap accurately; finally, considering multi-rejected gaps, it created logistic regression models to predict merging behavior. These models were tested using field data, and satisfactory performances were obtained.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Bing Li ◽  
Wei Cheng ◽  
Yiming Bie ◽  
Bin Sun

Right-turn motorized vehicles turn right using channelized islands, which are used to improve the capacity of intersections. For ease of description, these kinds of right-turn motorized vehicles are called advance right-turn motorized vehicles (ARTMVs) in this paper. The authors analyzed four aspects of traffic conflict involving ARTMVs with other forms of traffic flow. A capacity model of ARTMVs is presented here using shockwave theory and gap acceptance theory. The proposed capacity model was validated by comparison to the results of the observations based on data collected at a single intersection with channelized islands in Kunming, the Highway Capacity Manual (HCM) model and the VISSIM simulation model. To facilitate engineering applications, the relationship describing the capacity of the ARTMVs with reference to the distance between the conflict zone and the stop line and the relationship describing the capacity of the ARTMVs with reference to the effective red time of the nonmotorized vehicles moving in the same direction were analyzed. The authors compared these results to the capacity of no advance right-turn motorized vehicles (NARTMVs). The results show that the capacity of the ARTMVs is more sensitive to the changes in the arrival rate of nonmotorized vehicles when the arrival rate of the nonmotorized vehicles is 500  (veh/h)~2000  (veh/h) than when the arrival rate is some other value. In addition, the capacity of NARTMVs is greater than the capacity of ARTMVs when the nonmotorized vehicles have a higher arrival rate.


2011 ◽  
Vol 2257 (1) ◽  
pp. 95-102 ◽  
Author(s):  
Chulsu Yang ◽  
Stephen P. Mattingly ◽  
James C. Williams ◽  
Hyunwoong Kim

Author(s):  
Andrea Kocianova ◽  
Eva Pitlova

The capacity calculation procedure for unsignalized intersections is based on the gap-acceptance theory in most of existing capacity regulations and it relies on one of the important parameters - critical gap. However, the capacity calculation procedure and values of critical gaps according to these regulations are valid only for intersections with standard right-of-way (major street leading straight). Nevertheless, in Slovakia, intersections with bending right-of-way (major street not leading straight, but bending) can be encountered. The specific mode of right-of-way results in different priority ranks of traffic movements (set by traffic rules of driving), more complicated traffic situation and therefore, different driver behaviour characteristics. To examine the gap acceptance behaviour of drivers under these specific conditions, an unsignalized four-leg intersection with bending right-of-way located in an urban area of Zilina, Slovakia, was selected. Three different methods (Raff, Wu, and MLM Troutbeck) were used for critical gap estimation from the field data. In the article, results of critical gaps for three through movements of different priority rank (major-street through movement of Rank 2 and minor-street through movements of Rank 3 and 4) are presented. The results show, that the values of critical gaps differ depending on the method by about 3-5 % only, which is not significant. Troutbeck ´s MLM method gives the highest values. The priority rank of movement has the greatest impact on the result. The values of critical gap for major-street through movement of Rank 2 are the smallest; they are approximately 1.3-2.1 s smaller than the values for minor-street through movements of Rank 3 or 4. The highest values of critical gap have been estimated for minor-street through movement of Rank 4 and they are higher compared to the current Slovak regulations TP 102 values for the same priority rank.


Author(s):  
Yusheng CI ◽  
Lina WU ◽  
Yulong PEI ◽  
Xianzhang LING

2014 ◽  
Vol 641-642 ◽  
pp. 901-905
Author(s):  
Fei Fei Xu ◽  
Yu Chuan Du ◽  
Li Jun Sun

This paper provides the opportunity to present the performance evaluation results of Shanghai’s bus lane system in 2012. The evaluation results show that development of Shanghai’s bus lane system has fallen into a dilemma. The effectiveness of bus lanes was presenting a descending tendency. The average travel speed of bus lanes was only 14.6km/h, which was lower than the baseline of Shanghai’s transit metropolis construction targets. “Empty lane syndrome” existed in three newly implemented bus lanes. After 2010 Shanghai Expo, no new bus lane was built and the construction of bus lane came to a standstill. Lax enforcement resulted in high violation rates, which significantly reduced bus speed. Due to the increasing congestion in general purpose lanes and underutilization of bus lanes, attitudinal survey results revealed a negative public sentiment towards bus lanes. The grim situation urges a transition to sustainable development of bus lanes, namely, back to way to seek for efficiency and quality instead of blindly expansion.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Mudasser Seraj ◽  
Jiangchen Li ◽  
Tony Z. Qiu

Microscopic modeling of mixed traffic (i.e., automaton-driven vehicles and human-driven vehicles) dynamics, particularly car-following, lane-changing, and gap-acceptance, provides the opportunity to gain a more accurate estimation of flow-density relationships for both traditional traffic with human-driven vehicles and different mixed traffic scenarios. Our paper proposes a microscopic framework to model multilane traffic for both vehicle types on shared roadways which sets the stage to explore the capability of macroscopic car-following models in general to explain the fundamental flow-density relationship. Since prior models inadequately represent the fundamental diagram realistically, we propose a rectified macroscopic flow model that can account for the impact of both lane-changing and gap-acceptance. Differentiability, boundary conditions, and flexibility of the proposed model are tested to validate its applicability. Finally, the capability to interpret the flow-density relationship by the proposed model is verified for different mixed traffic scenarios. Although few model parameter values were obtained directly from the simulation input, the rest of the parameters have been calibrated by flow and density outputs from the simulations. The analysis results show a distinct correlation between the proposed model parameters with automation-driven vehicle shares and lane-changing rates of traffic. The findings from this study emphasize the importance of taking complete motion dynamics into account, rather than partial motion dynamics (i.e., car-following) as has been the case in the previous studies, to explain macroscopic traffic flow characteristics, irrespective of the vehicle type.


2008 ◽  
Vol 35 (3) ◽  
pp. 301-311 ◽  
Author(s):  
Jin-Tae Kim ◽  
Joonhyon Kim ◽  
Myungsoon Chang

Existing techniques for microscopic simulation of lane changes utilize a single critical gap for a single vehicle. Freeway merging areas have been among the most difficult aspects of simulations due to the wide variety of merging behaviors in these areas. This paper proposes a gap acceptance model developed to update the size of the critical trailing gap for a merging vehicle during simulation based on the location of the vehicle in an acceleration lane. It also considers the relative speed and critical leading gap. Sets of critical trailing gap values for various situations are computed. The outputs from the microscopic simulations utilizing the proposed model were compared with field data, producing strong statistical evidence that the simulation results and field data were significantly comparable.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Xing-jian Xue ◽  
Feng Shi ◽  
Qun Chen

This paper proposes a model for estimating capacity of on-ramp merging section of urban expressway based on dynamics and gap acceptance theory, considering lane-changing processes and time headway loss. Survey data were collected from on-ramp merging sections of shanghai urban expressway system and showed that capacity drop of on-ramp merging section is caused by drivers’ lane-changing which may lead to unsteady speed of vehicles and so prolonged time headway compared to the minimum time headway corresponding to the maximum capacity. Three parameters (optimal time headway, time headway loss, and interference quantity of lane-changing) are given and a methodology by accumulating time headway loss due to lane-changing is developed to estimate the capacity drop. Results’ comparisons between real data and microsimulation of on-ramp merging sections and sensitivity analysis show that the proposed model can produce reliable and accurate results. This study also reveals that ramp flow and the difference between the optimal speed and the lane-changing speed of fleet have a great impact on capacity drop. This study is beneficial to evaluate congestion levels, to understand complex traffic phenomena, and so to find efficient solutions.


Sign in / Sign up

Export Citation Format

Share Document