Considerations for using the 4 mm Plate Geometry in the Dynamic Shear Rheometer for Low Temperature Evaluation of Asphalt Binders

Author(s):  
Ramez Hajj ◽  
Angelo Filonzi ◽  
Syeda Rahman ◽  
Amit Bhasin

The low-temperature properties of asphalt binder have attracted attention in recent years thanks to an increase in the use of reclaimed asphalt pavements (RAP). Traditional methods to evaluate the low-temperature properties of the binder require a large amount of binder that needs to be recovered from RAP samples for testing with a Bending Beam Rheometer (BBR). To economize on sample size for RAP materials and also for emulsion residues, previous researchers have explored the potential of using a 4 mm diameter specimen with a Dynamic Shear Rheometer (DSR) in lieu of the BBR. To compare results from frequency sweep tests conducted using the DSR with results from the BBR, data from the former need to be converted to time domain and subsequently from a shear load response to an axial load response. Previous research studies have developed methods to accomplish these two conversions to compare data from the DSR with data from the BBR. The objective of this study is to examine some of these methods from the literature and elsewhere based on the principles of linear viscoelastic interconversion using a set of 11 different binders. Results using different analytical approaches from this study show that the DSR has good repeatability and verify that it can be used as a surrogate for the BBR to determine low-temperature properties, while exercising some caution with some of the assumptions related to Poisson’s ratio.

2021 ◽  
Vol 902 ◽  
pp. 135-143
Author(s):  
Mohammad Ali Khasawneh ◽  
Khalid Ghuzlan ◽  
Nada Bani Melhem

Rutting, fatigue cracking and low temperature cracking are the most important distresses in asphalt pavements as a result of changes in rheological properties of asphalt binder. Many types of modifiers were used to enhance asphalt behavior at both low and high temperatures. In this study, carbon nanotubes (CNT) were used as one of many nanomaterials that take a large attention in the latest research related to asphalt modification against different types of distresses. Effect of CNT on rheological properties of asphalt binder was investigated by testing unmodified and CNT modified asphalt binders using two of Superpave devices: Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR). Penetration, softening point, flash point and rotational viscosity (RV) tests were carried out as well. CNT was added in 0.1%, 0.5% and 1% by weight of asphalt binder. It was found that adding CNT in 0.5% and 1% increase stiffness of asphalt and consequently asphalt pavement rutting resistance. On the other hand, this increase in stiffness affected pavement behavior adversely which is not desirable for fatigue and low temperature cracking. However, Superpave specifications were still satisfied and asphalt binder’s relaxation properties were improved upon CNT modification. It was eventually found that 0.5% of CNT is the optimum percentage for the best performance.


2019 ◽  
Vol 48 (1) ◽  
pp. 20180893
Author(s):  
Johannes Schrader ◽  
Michael P. Wistuba ◽  
Augusto Cannone Falchetto ◽  
Chiara Riccardi ◽  
Alexander Alisov

Author(s):  
Di Wang ◽  
Augusto Cannone Falchetto ◽  
Alexander Alisov ◽  
Johannes Schrader ◽  
Chiara Riccardi ◽  
...  

The possibility of using the dynamic shear rheometer (DSR) with 4 mm parallel plates and 3 mm gap is investigated as an alternative experimental method to measure the rheological properties of asphalt binders at low temperature. A special butterfly silicone mold was prepared for this purpose and the corresponding testing procedure was also developed. Five different asphalt binders, which are part of two active research projects, were selected. Frequency and temperature sweep tests were conducted using the DSR with three plate–plate geometries: 4 mm, 8 mm, and 25 mm. The new testing procedure was used to measure at low temperatures. The method recently proposed by the Western Research Institute and based on DSR tests with 4 mm parallel plates and 1.75 mm gap was also used for comparison purposes. Black diagrams and Cole-Cole plots were then used to evaluate the experimental data. Complex modulus and phase angle master curves were generated, and the rheological parameters compared. Finally, the two spring, two parabolic elements, one dashpot (2S2P1D) model was selected to investigate the rheological properties of the binders. Results indicate that the proposed procedure is a simple and reliable experimental method and represents an alternative experimental option to measure and analyze the rheological properties of asphalt binders at low temperature.


Author(s):  
Ramez Hajj ◽  
Rachel Hure ◽  
Amit Bhasin

The search for a test and parameter that can effectively describe the fatigue cracking resistance of an asphalt binder has led to many approaches. Of these, researchers have used stiffness, strength, and ductility-based criteria to screen binders on the basis of inherent resistance to cracking. In this study, poker chip testing on thin films of asphalt binder was used at intermediate temperatures to obtain both stress and ductility-based properties of eight binders. In addition, a dynamic shear rheometer frequency sweep at an intermediate temperature was conducted to obtain stiffnesses of the binders and a surrogate parameter for ductility. The results showed no relationship between strength and stiffness. In most cases, binders that were rated to have high ductility on the basis of the dynamic shear rheometer parameter also had high toughness on the basis of the poker chip test. However, some binders clearly departed from this trend, with at least one binder exhibiting both ideally desired high stiffness and toughness. Examination of failure surfaces from the poker chip test provided additional information about the mechanisms that drove failure.


Author(s):  
Panos Apostolidis ◽  
Cor Kasbergen ◽  
Amit Bhasin ◽  
Athanassios Scarpas ◽  
Sandra Erkens

With the effort to precisely predict the lifetime of asphalt binders and subsequently optimize their utilization in a more economical way, the objective of this study was to introduce a new methodology to improve the fatigue characterization of asphalt binders through a new dynamic shear rheometer (DSR) sample testing geometry. Initially, numerical analyses were performed to study the geometry-related issues of a standard DSR sample on time sweep tests, and to assist in the effort to increase understanding of the DSR damage phenomena of asphalt samples. On the basis of these numerical analyses, a new testing geometry, the parallel hollow plate, was developed and its test results compared with the standard sample testing geometry. A single type of asphalt binder was assessed using amplitude sweep tests. The obtained results demonstrated a significant difference between the fatigue of the two sets of DSR sample geometries. On the basis of these, time sweep tests were conducted for the same sample geometries and the results demonstrated that the new testing geometry yields material response consistency under different loading conditions. The lifetime prediction of the standard parallel plates showed a significant difference with the newly developed DSR sample testing geometry by overestimating the total number of cycles until asphalt binder failure. The new testing geometry allowed the isolation of the damaged area of asphalt binder by localizing the shear stresses in the samples’ periphery.


2021 ◽  
Vol 50 (3) ◽  
pp. 20210277
Author(s):  
Satyavati Komaragiri ◽  
Angelo Filonzi ◽  
Ahmad Masad ◽  
Darren Hazlett ◽  
Enad Mahmoud ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3073
Author(s):  
Abbas Mukhtar Adnan ◽  
Chaofeng Lü ◽  
Xue Luo ◽  
Jinchang Wang

This study has investigated the impact of graphene oxide (GO) in enhancing the performance properties of an asphalt binder. The control asphalt binder (60/70 PEN) was blended with GO in contents of 0%, 0.5%, 1%, 1.5%, 2%, and 2.5%. The permanent deformation behavior of the modified asphalt binders was evaluated based on the zero shear viscosity (ZSV) parameter through a steady shear test approach. Superpave fatigue test and the linear amplitude sweep (LAS) method were used to evaluate the fatigue behavior of the binders. A bending beam rheometer (BBR) test was conducted to evaluate the low-temperature cracking behavior. Furthermore, the storage stability of the binders was investigated using a separation test. The results of the ZSV test showed that GO considerably enhanced the steady shear viscosity and ZSV value, showing a significant contribution of the GO to the deformation resistance; moreover, GO modification changed the asphalt binder’s behavior from Newtonian to shear-thinning flow. A notable improvement in fatigue life was observed with the addition of GO to the binder based on the LAS test results and Superpave fatigue parameter. The BBR test results revealed that compared to the control asphalt, the GO-modified binders showed lower creep stiffness (S) and higher creep rate (m-value), indicating increased cracking resistance at low temperatures. Finally, the GO-modified asphalt binders exhibited good storage stability under high temperatures.


Sign in / Sign up

Export Citation Format

Share Document