Extracellular vesicles from three dimensional culture of human placental mesenchymal stem cells ameliorated renal ischemia/reperfusion injury

2021 ◽  
pp. 039139882098680
Author(s):  
Xuefeng Zhang ◽  
Nan Wang ◽  
Yuhua Huang ◽  
Yan Li ◽  
Gang Li ◽  
...  

Background: Three-dimensional (3D) culture has been reported to increase the therapeutic potential of mesenchymal stem cells (MSCs). The present study assessed the therapeutic efficacy of extracellular vesicles (EVs) from 3D cultures of human placental MSCs (hPMSCs) for acute kidney injury (AKI). Methods: The supernatants from monolayer culture (2D) and 3D culture of hPMSCs were ultra-centrifuged for EVs isolation. C57BL/6 male mice were submitted to 45 min bilateral ischemia of kidney, followed by renal intra-capsular administration of EVs within a 72 h reperfusion period. Histological, immunohistochemical, and ELISA analyses of kidney samples were performed to evaluate cell death and inflammation. Kidney function was evaluated by measuring serum creatinine and urea nitrogen. The miRNA expression profiles of EVs from 2D and 3D culture of hPMSCs were evaluated using miRNA microarray analysis. Results: The 3D culture of hPMSCs formed spheroids with different diameters depending on the cell density seeded. The hPMSCs produced significantly more EVs in 3D culture than in 2D culture. More importantly, injection of EVs from 3D culture of hPMSCs into mouse kidney with ischemia-reperfusion (I/R)-AKI was more beneficial in protecting from progression of I/R than those from 2D culture. The EVs from 3D culture of hPMSCs were more efficient against apoptosis and inflammation than those from 2D culture, which resulted in a reduction in tissue damage and amelioration of renal function. MicroRNA profiling analysis revealed that a set of microRNAs were significantly changed in EVs from 3D culture of hPMSCs, especially miR-93-5p. Conclusion: The EVs from 3D culture of hPMSCs have therapeutic potential for I/R-AKI.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Huifang Li ◽  
Haoyan Huang ◽  
Xiaoniao Chen ◽  
Shang Chen ◽  
Lu Yu ◽  
...  

Abstract Background Chemotherapy is an effective anti-tumor treatment. Mesenchymal stem cells (MSCs), exerting therapy effect on injured tissues during chemotherapy, may be damaged in the process. The possibility of self-healing through long-range paracrine and the mechanisms are unclear. Methods Doxorubicin, a commonly used chemotherapy drug, was to treat human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) for 6 h as an in vitro cell model of chemotherapy-induced damage. Then we use extracellular vesicles derived from placental mesenchymal stem cells (hP-MSCs) to investigate the therapeutic potential of MSCs-EVs for chemotherapy injury. The mechanism was explored using microRNA sequencing. Results MSC-derived extracellular vesicles significantly alleviated the chemotherapy-induced apoptosis. Using microRNA sequencing, we identified hsa-miR-11401, which was downregulated in the Dox group but upregulated in the EV group. The upregulation of hsa-miR-11401 reduced the expression of SCOTIN, thereby inhibiting p53-dependent cell apoptosis. Conclusions Hsa-miR-11401 expressed by MSCs can be transported to chemotherapy-damaged cells by EVs, reducing the high expression of SCOTIN in damaged cells, thereby inhibiting SCOTIN-mediated apoptosis.


2021 ◽  
Author(s):  
Fang-Ying Du ◽  
Na Zhao ◽  
Lei Bao ◽  
Jing Lei ◽  
An-Qi Liu ◽  
...  

Abstract Background: Mesenchymal stem cells (MSCs) have been used to treat immunopathy, and three-dimensional (3D) cultured MSCs show enhanced immunomodulatory property compared with those in two-dimensional (2D) culture. However, both the regulatory mechanisms remain unclear. The aim of the study was to investigate the role of mechanical stress in maintaining the immunomodulatory function of 2D and 3D cultured MSCs.Methods: Umbilical cord mesenchymal stem cells (UC-MSCs) were plated on tissue culture plastic (TCP) as 2D culture and 3D cultured UC-MSCs were seeded in matrigel. Surface markers, clonogenicity, proliferation and immunoregulatory property of UC-MSCs were evaluated. Meanwhile, we established the mouse models of colitis and type 1 diabetes mellitus (T1DM) to reveal the pharmacotherapeutic effects of 3D cultured MSCs in vivo. The effect of changing mechanical stress by modulating Yes-associated protein (YAP) on immunomodulatory function of 2D and 3D cultured UC-MSCs was evaluated by immunofluorescent analysis, real-time quantitative polymerase chain reaction (qPCR) and western blot.Results: We verified early passage UC-MSCs in 2D and 3D cultures exhibited stemness, immunomodulatory property and therapeutic efficacy against immunopathy. However, these characteristics of 2D cultured UC-MSCs were impaired after extensive expansion, whereas 3D culture extended them for several passages by activating YAP. Moreover, prostaglandin E2 (PGE2) could up-regulate YAP to improve the immunomodulatory ability of 2D cultured UC-MSCs after extensive expansion. Conclusions: This work found for the first time that the significance of mechanical stress in maintaining immunoregulatory function of 2D and 3D cultured UC-MSCs, providing a new idea for improving the efficacy of MSCs-based immunotherapy.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 880
Author(s):  
Shamsul Bin Sulaiman ◽  
Shiplu Roy Chowdhury ◽  
Mohd Fauzi Bin Mh Busra ◽  
Rizal Bin Abdul Rani ◽  
Nor Hamdan Bin Mohamad Yahaya ◽  
...  

The tissue engineering approach in osteoarthritic cell therapy often requires the delivery of a substantially high cell number due to the low engraftment efficiency as a result of low affinity binding of implanted cells to the targeted tissue. A modification towards the cell membrane that provides specific epitope for antibody binding to a target tissue may be a plausible solution to increase engraftment. In this study, we intercalated palmitated protein G (PPG) with mesenchymal stem cells (MSCs) and antibody, and evaluated their effects on the properties of MSCs either in monolayer state or in a 3D culture state (gelatin microsphere, GM). Bone marrow MSCs were intercalated with PPG (PPG-MSCs), followed by coating with type II collagen antibody (PPG-MSC-Ab). The effect of PPG and antibody conjugation on the MSC proliferation and multilineage differentiation capabilities both in monolayer and GM cultures was evaluated. PPG did not affect MSC proliferation and differentiation either in monolayer or 3D culture. The PPG-MSCs were successfully conjugated with the type II collagen antibody. Both PPG-MSCs with and without antibody conjugation did not alter MSC proliferation, stemness, and the collagen, aggrecan, and sGAG expression profiles. Assessment of the osteochondral defect explant revealed that the PPG-MSC-Ab micromass was able to attach within 48 h onto the osteochondral surface. Antibody-conjugated MSCs in GM culture is a potential method for targeted delivery of MSCs in future therapy of cartilage defects and osteoarthritis.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Vitale Miceli ◽  
Mariangela Pampalone ◽  
Serena Vella ◽  
Anna Paola Carreca ◽  
Giandomenico Amico ◽  
...  

The secretion of potential therapeutic factors by mesenchymal stem cells (MSCs) has aroused much interest given the benefits that it can bring in the field of regenerative medicine. Indeed, the in vitro multipotency of these cells and the secretive capacity of both angiogenic and immunomodulatory factors suggest a role in tissue repair and regeneration. However, during culture, MSCs rapidly lose the expression of key transcription factors associated with multipotency and self-renewal, as well as the ability to produce functional paracrine factors. In our study, we show that a three-dimensional (3D) culture method is effective to induce MSC spheroid formation, to maintain the multipotency and to improve the paracrine activity of a specific population of human amnion-derived MSCs (hAMSCs). The regenerative potential of both 3D culture-derived conditioned medium (3D CM) and their exosomes (EXO) was assessed against 2D culture products. In particular, tubulogenesis assays revealed increased capillary maturation in the presence of 3D CM compared with both 2D CM and 2D EXO. Furthermore, 3D CM had a greater effect on inhibition of PBMC proliferation than both 2D CM and 2D EXO. To support this data, hAMSC spheroids kept in our 3D culture system remained viable and multipotent and secreted considerable amounts of both angiogenic and immunosuppressive factors, which were detected at lower levels in 2D cultures. This work reveals the placenta as an important source of MSCs that can be used for eventual clinical applications as cell-free therapies.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Heng Zhang ◽  
Meng Xiang ◽  
Dan Meng ◽  
Ning Sun ◽  
Sifeng Chen

Exosomes secreted by mesenchymal stem cells have shown great therapeutic potential in regenerative medicine. In this study, we performed meta-analysis to assess the clinical effectiveness of using exosomes in ischemia/reperfusion injury based on the reports published between January 2000 and September 2015 and indexed in the PUBMED and Web of Science databases. The effect of exosomes on heart function was evaluated according to the following parameters: the area at risk as a percentage of the left ventricle, infarct size as a percentage of the area at risk, infarct size as a percentage of the left ventricle, left ventricular ejection fraction, left ventricular fraction shortening, end-diastolic volume, and end-systolic volume. Our analysis indicated that the currently available evidence confirmed the therapeutic potential of mesenchymal stem cell-secreted exosomes in the improvement of heart function. However, further mechanistic studies, therapeutic safety, and clinical trials are required for optimization and validation of this approach to cardiac regeneration after ischemia/reperfusion injury.


2011 ◽  
Vol 236 (11) ◽  
pp. 1333-1341 ◽  
Author(s):  
Giuseppe Musumeci ◽  
Debora Lo Furno ◽  
Carla Loreto ◽  
Rosario Giuffrida ◽  
Silvia Caggia ◽  
...  

The present study focused on the isolation, cultivation and characterization of human mesenchymal stem cells (MSCs) from adipose tissue and on their differentiation into chondrocytes through the NH ChondroDiff medium. The main aim was to investigate some markers of biomechanical quality of cartilage, such as lubricin, and collagen type I and II. Little is known, in fact, about the ability of chondrocytes from human MSCs of adipose tissue to generate lubricin in three-dimensional (3D) culture. Lubricin, a 227.5-kDa mucinous glycoprotein, is known to play an important role in articular joint physiology, and the loss of accumulation of lubricin is thought to play a role in the pathology of osteoarthritis. Adipose tissue is an alternative source for the isolation of multipotent MSCs, which allows them to be obtained by a less invasive method and in larger quantities than from other sources. These cells can be isolated from cosmetic liposuctions in large numbers and easily grown under standard tissue culture conditions. 3D chondrocytes were assessed by histology (hematoxylin and eosin) and histochemistry (Alcian blue and Safranin-O/fast green staining). Collagen type I, II and lubricin expression was determined through immunohistochemistry and Western blot. The results showed that, compared with control cartilage and monolayer chondrocytes showing just collagen type I, chondrocytes from MSCs (CD44-, CD90- and CD105- positive; CD45-, CD14- and CD34-negative) of adipose tissue grown in nodules were able to express lubricin, and collagen type I and II, indicative of hyaline cartilage formation. Based on the function of lubricin in the joint cavity and disease and as a potential therapeutic agent, our results suggest that MSCs from adipose tissue are a promising cell source for tissue engineering of cartilage. Our results suggest that chondrocyte nodules producing lubricin could be a novel biotherapeutic approach for the treatment of cartilage abnormalities.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaozhi Zhao ◽  
Xuefeng Qiu ◽  
Yanting Zhang ◽  
Shiwei Zhang ◽  
Xiaoping Gu ◽  
...  

It has been shown that administration of adipose derived mesenchymal stem cells (AdMSCs) enhanced structural and functional recovery of renal ischemia-reperfusion (IR) injury. Low engraftment of stem cells, however, limits the therapeutic effects of AdMSCs. The present study was designed to enhance the therapeutic effects of AdMSCs by delivering AdMSCs in a three-dimensional (3D) aggregates form. Microwell was used to produce 3D AdMSCs aggregates. In vitro data indicated that AdMSCs in 3D aggregates were less susceptible to oxidative and hypoxia stress induced by 200 μM peroxide and hypoxia/reoxygenation, respectively, compared with those cultured in two-dimensional (2D) monolayer. Furthermore, AdMSCs in 3D aggregates secreted more proangiogenic factors than those cultured in 2D monolayer. 2D AdMSCs or 3D AdMSCs aggregates were injected into renal cortex immediately after induction of renal IR injury. In vivo data revealed that 3D aggregates enhanced the effects of AdMSCs in recovering function and structure after renal IR injury. Improved grafted AdMSCs were observed in kidney injected with 3D aggregates compared with AdMSCs cultured in 2D monolayer. Our results demonstrated that 3D AdMSCs aggregated produced by microwell enhanced the retention and therapeutic effects of AdMSCs for renal IR injury.


Sign in / Sign up

Export Citation Format

Share Document