Effect of a Novel Coupling Agent, Polybutadiene Isocyanate, on Mechanical Properties of Wood-Fiber Polypropylene Composites

2008 ◽  
Vol 27 (16-17) ◽  
pp. 1679-1687 ◽  
Author(s):  
Amir Nourbakhsh ◽  
Bouhuslav V. Kokta ◽  
Alireza Ashori ◽  
Ahmad Jahan-Latibari
2010 ◽  
Vol 123-125 ◽  
pp. 1195-1198 ◽  
Author(s):  
Alireza Ashori

In this study, the effect of wood fiber concentrations on the mechanical properties of composites, prepared by using MAPP as the coupling agent, was investigated. In the sample preparation, four levels of fiber loading and three compounding temperatures were used. Most major changes in composite performance occurred at fiber contents above 30 wt%.The results clearly showed that the fiber loading of 30 and 40 wt% at 190oC was provided adequate reinforcement to increase the tensile and flexural strength of the PP powder. The modulus also increased with increasing the fiber content, because poplar fibers are believed to be more rigid than polymer. However, the addition of wood fibers resulted in a decrease in elongation and impact properties of the composites.


2006 ◽  
Vol 102 (5) ◽  
pp. 4759-4763 ◽  
Author(s):  
Alinaghi Karimi ◽  
Saleh Nazari ◽  
Ismaeil Ghasemi ◽  
Mehdi Tajvidi ◽  
Ghanbar Ebrahimi

2015 ◽  
Vol 1767 ◽  
pp. 139-143
Author(s):  
Ramón Sánchez ◽  
Jacobo Aguilar ◽  
Silvia Y. Martínez ◽  
Reyes J. Sanjuan ◽  
Gerardo A. Mejía ◽  
...  

ABSTRACTDynamic mechanical properties of polypropylene (PP) and grafted polypropylene (PP-g-MA) composites reinforced with acetylated wheat straw fibers (WSF) is reported in this work. The materials were prepared with different fiber particle sizes (40, 80 and 140 U.S. mesh) and at different fiber contents (5, 10 and 15 wt.%). The PP and PP-g-MA composites, where anhydride maleic (MA) was used as coupling agent, were obtained using a twin-screw extruder; whereas an injection-molding machine molded the composite pellets into testing specimens. To observe the morphology of the composites, micrographs were taken with an optical microscope. The Dynamic mechanical properties were analyzed using a torsional rheometer. The morphological analysis showed a high porous structure somehow similar to foamed materials. The storage modulus (G′) increased by increasing the fiber content, and decreased with fiber particle sizes for the PP composites. Meanwhile, the use of the coupling agent additive promoted a modulus increase due to higher fiber-polymer interaction, from better adhesion and chemical bonds formation between the fibers-coupling agent-PP.


2021 ◽  
Vol 1 (1) ◽  
pp. 42-50
Author(s):  
Mohd Sukhairi Mat Rasat ◽  
Razak Wahab ◽  
Amran Shafie ◽  
Ahmad Mohd Yunus AG. ◽  
Mahani Yusoff ◽  
...  

Using natural wood-fiber as reinforcement in commercial thermoplastics is gaining momentum due to its high specific properties and renewable resources. In this study, the effect of wood particle geometry size on mechanical properties of thermoplastics composite was investigated. The wood species that has been chosen is Kelempayan species (Neolamarckia cadamba) and reinforced with polypropylene using fiber geometry size of 75 and 250 ?m. Thermoplastic composites were produced from two types of ratio (30:70 and 10:90) between wood-fiber and polypropylene. Static bending and tensile strength were tested. The result showed that wood-fiber from 75 ?m geometry sizes with ratio of 30:70 between wood-fiber and polypropylene was most suitable in producing thermoplastic composites. The geometry sizes of wood particle as well as the ratio between wood-fiber and polypropylene were found to influence the mechanical properties of the thermoplastic composites.


2013 ◽  
Vol 812 ◽  
pp. 187-191 ◽  
Author(s):  
Nur Izzati Zulkifli ◽  
Noorasikin Samat

Recycled polypropylene/microcrystalline cellulose (rPP/MCC) composites were prepared by adding different loadings of maleic anhydride grafted polypropylene (MAPP) coupling agent. The tensile, impact and morphological properties of the composites were investigated. The obtained results show that the tensile and impact strengths of the composites were significantly enhanced with the addition of MAPP loading from 2 to 5 wt%, as compared with unfilled rPP/MCC composites. However, it was found that at low filler content, different amounts of MAPP resulted in no appreciable change in the tensile strength and modulus. Moreover, dynamic mechanical analysis (DMA) results indicated that, increasing the amount of MAPP loading from 2 to 5 wt% in rPP/MCC provide better stiffness of the composite compared to those neat rPP and neat PP. Field emission scanning microscopy (FESEM) has shown that the composite, with MAPP loading, promotes better fibermatrix interaction.


Sign in / Sign up

Export Citation Format

Share Document