Data analysis on fiber-reinforced polymer shear contribution of reinforced concrete beam shear strengthened with U-jacketing fiber-reinforced polymer composites

2016 ◽  
Vol 36 (2) ◽  
pp. 98-120 ◽  
Author(s):  
Chunyang Ji ◽  
Weiwen Li ◽  
Chengyue Hu ◽  
Feng Xing

Lots of studies have investigated the shear contribution of the fiber-reinforced polymer of reinforced concrete beams with externally bonded fiber-reinforced polymer (FRP). In this paper, based on more than 200 collected experimental results of reinforced concrete beams shear strengthened with U-jacketing fiber-reinforced polymer composites, four existing design guidelines on the fiber-reinforced polymer shear contribution of strengthened reinforced concrete beams are compared in terms of the effect of the shear span-to-effective depth ratio, beam size, and stirrup ratio. These three influence factors are found to play significant roles in the prediction accuracy of different design guidelines. This paper, therefore, proposes an advanced shear strength model, which considers the effect of shear span-to-effective depth ratio, beam size, and stirrup ratio. The proposed model can provide better predictions of fiber-reinforced polymer shear contribution.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 696 ◽  
Author(s):  
Alireza Javadian ◽  
Ian F. C. Smith ◽  
Dirk E. Hebel

Reinforced concrete is the most widely used building material in history. However, alternative natural and synthetic materials are being investigated for reinforcing concrete structures, given the limited availability of steel in developing countries, the rising costs of steel as the main reinforcement material, the amount of energy required by the production of steel, and the sensitivity of steel to corrosion. This paper reports on a unique use of bamboo as a sustainable alternative to synthetic fibers for production of bamboo fiber-reinforced polymer composite as reinforcement for structural-concrete beams. The aim of this study is to evaluate the feasibility of using this novel bamboo composite reinforcement system for reinforced structural-concrete beams. The bond strength with concrete matrix, as well as durability properties, including the water absorption and alkali resistance of the bamboo composite reinforcement, are also investigated in this study. The results of this study indicate that bamboo composite reinforced concrete beams show comparable ultimate loads with regards to fiber reinforced polymer (FRP) reinforced concrete beams according to the ACI standard. Furthermore, the results demonstrate the potential of the newly developed bamboo composite material for use as a new type of element for non-deflection-critical applications of reinforced structural-concrete members. The design guidelines that are stated in ACI 440.1R-15 for fiber reinforced polymer (FRP) reinforcement bars are also compared with the experimental results that were obtained in this study. The American Concrete Institute (ACI) design guidelines are suitable for non-deflection-critical design and construction of bamboo-composite reinforced-concrete members. This study demonstrates that there is significant potential for practical implementation of the bamboo-composite reinforcement described in this paper. The results of this study can be utilized for construction of low-cost and low-rise housing units where the need for ductility is low and where secondary-element failure provides adequate warning of collapse.


2016 ◽  
Vol 707 ◽  
pp. 51-59 ◽  
Author(s):  
Osama Ahmed Mohamed ◽  
Rania Khattab

The behaviour of reinforced concrete beam strengthened with Carbon Fiber Reinforced Polymer (CFRP) and Glass fiber reinforced polymer GFRP laminates was investigated using finite element models and the results are presented in this paper. The numerical investigation assessed the effect of the configuration of FRP strengthening laminates on the behaviour of concrete beams. The load-deflection behaviour, and ultimate load of strengthened beam were compared to those of un-strengthened concrete beams. It was shown that using U-shaped FRP sheets increased the ultimate load. The stiffness of the strengthed beam also increased after first yielding of steel reinforcing bars. At was also observed that strengthening beams with FRP laminates to one-fourth of the beam span, modifies the failure of the beam from shear-controlled near the end of the unstrengthened beam, to flexure-controlled near mid-span. CFRP produced better results compared GFRP in terms of the ability to enhance the behavior of strengthenened reinforced concrete beams.


2019 ◽  
Vol 23 (7) ◽  
pp. 1290-1304
Author(s):  
Yang Yang ◽  
Ze-Yang Sun ◽  
Gang Wu ◽  
Da-Fu Cao ◽  
Zhi-Qin Zhang

This study presents a design method for hybrid fiber-reinforced-polymer-steel-reinforced concrete beams by an optimized analysis of the cross section. First, the relationships among the energy consumption, the bearing capacity, and the reinforcement ratio are analyzed; then, the parameters of the cross section are determined. Comparisons between the available theoretical and experimental results show that the designed hybrid fiber-reinforced-polymer-steel-reinforced concrete beams with a low area ratio between the fiber-reinforced polymer and the steel reinforcement could meet the required carrying capacity and exhibited high ductility.


Sign in / Sign up

Export Citation Format

Share Document