The Use of Three-Dimensional Computational Fluid Dynamics in the Design of Extrusion Dies

1997 ◽  
Vol 16 (7) ◽  
pp. 661-674 ◽  
Author(s):  
W. A. Gifford

With the proper use of three-dimensional computational fluid dynamics (CFD), the design of extrusion dies can be taken from that of an art to a science. Although replacing simpler traditional one- and two-dimensional approaches with fully three-dimensional ones requires a much more in depth analysis and a large amount of computations, the design of most dies can be performed on a personal computer. This paper demonstrates how these techniques are being used to obtain optimized designs of extrusion dies.

Author(s):  
Sunita Kruger ◽  
Leon Pretorius

In this paper, the influence of various bench arrangements on the microclimate inside a two-span greenhouse is numerically investigated using three-dimensional Computational Fluid Dynamics (CFD) models. Longitudinal and peninsular arrangements are investigated for both leeward and windward opened roof ventilators. The velocity and temperature distributions at plant level (1m) were of particular interest. The research in this paper is an extension of two-dimensional work conducted previously [1]. Results indicate that bench layouts inside the greenhouse have a significant effect on the microclimate at plant level. It was found that vent opening direction (leeward or windward) influences the velocity and temperature distributions at plant level noticeably. Results also indicated that in general, the leeward facing greenhouses containing either type of bench arrangement exhibit a lower velocity distribution at plant level compared to windward facing greenhouses. The latter type of greenhouses has regions with relatively high velocities at plant level which could cause some concern. The scalar plots indicate that more stagnant areas of low velocity appear for the leeward facing greenhouses. The windward facing greenhouses also display more heterogeneity at plant level as far as temperature is concerned.


2005 ◽  
Vol 498-499 ◽  
pp. 179-185
Author(s):  
A.F. Lacerda ◽  
Luiz Gustavo Martins Vieira ◽  
A.M. Nascimento ◽  
S.D. Nascimento ◽  
João Jorge Ribeiro Damasceno ◽  
...  

A two-dimensional fluidynamics model for turbulent flow of gas in cyclones is used to evaluate the importance of the anisotropic of the Reynolds stress components. This study presents consisted in to simulate through computational fluid dynamics (CFD) package the operation of the Lapple cyclone. Yields of velocity obtained starting from a model anisotropic of the Reynolds stress are compared with experimental data of the literature, as form of validating the results obtained through the use of the Computational fluid dynamics (Fluent). The experimental data of the axial and swirl velocities validate numeric results obtained by the model.


2003 ◽  
Vol 125 (1) ◽  
pp. 158-165 ◽  
Author(s):  
A. Ashrafizadeh ◽  
G. D. Raithby ◽  
G. D. Stubley

This paper describes a method for calculating the shape of duct that leads to a prescribed pressure distribution on the duct walls. The proposed design method is computationally inexpensive, robust, and a simple extension of existing computational fluid dynamics methods; it permits the duct shape to be directly calculated by including the coordinates that define the shape of the duct wall as dependent variables in the formulation. This “direct design method” is presented by application to two-dimensional ideal flow in ducts. The same method applies to many problems in thermofluids, including the design of boundary shapes for three-dimensional internal and external viscous flows.


2009 ◽  
Vol 4 (1) ◽  
Author(s):  
K. Ramalingam ◽  
J. Fillos ◽  
S. Xanthos ◽  
M. Gong ◽  
A. Deur ◽  
...  

New York City provides secondary treatment to approximately 78.6 m3/s among its 14 water pollution control plants (WPCPs). The process of choice has been step-feed activated sludge. Changes to the permit limits require nitrogen removal in WPCPs discharging into the Long Island Sound. The City has selected step feed biological nitrogen removal (BNR) process to upgrade the affected plants. Step feed BNR requires increasing the concentration of mixed liquors, (MLSS), which stresses the Gould II type rectangular final settling tanks (FSTs). To assess performance and evaluate alternatives to improve efficiency of the FSTs at the higher loads, New York City Department of Environmental Protection (NYCDEP) and City College of New York (CCNY) have developed a three-dimensional computer model depicting the actual structural configuration of the tanks and the current and proposed hydraulic and solids loading rates. Using Computational Fluid Dynamics (CFD) Model, Fluent 6.3.26TM as the base platform, sub-models of the SS settling characteristics as well as turbulence, flocculation, etc. were incorporated. This was supplemented by field and bench scale experiments to quantify the co-efficients integral to the sub-models. As a result, a three-dimensional model has been developed that is being used to consider different baffle arrangements, sludge withdrawal mechanisms and loading alternatives to the FSTs.


2013 ◽  
Vol 20 (05) ◽  
pp. 1350043 ◽  
Author(s):  
YUNCAI ZHAO ◽  
LEI HAN

A two-dimensional computational fluid dynamics (CFD) model was developed to study the load-bearing capacity of asymmetric texture under the state of fluid lubrication. The effects of asymmetric parameter H and the Reynolds number Re on hydrodynamic load-bearing capacity of the oil film were discussed. It was found that a decrease in asymmetric parameter H may significantly improve the load-bearing capacity, but an increase in Reynolds number Re may reduce this effect. For example, with a Re at 20, the load-bearing capacity increases by 73.44% with the H varying from 4 to 0.2. However, with a Re at 160, it has only an increase of 4.68% at the same conditions. In addition, the numerical results also showed that the load-bearing capacity will increase with the increase of Re in certain texture.


2005 ◽  
Vol 33 (3) ◽  
pp. 195-207 ◽  
Author(s):  
Z. Husain ◽  
M. Z. Abdullah ◽  
T. C. Yap

The two-dimensional analysis, using computational fluid dynamics (CFD), of tandem/staggered arranged airfoils of the canard and wing of an Eagle 150 aircraft and also the aerodynamic tests conducted in an open-circuit wind tunnel are presented in the paper. The wind tunnel tests were carried out at a speed of 38m/s in a test section of size 300 mm (width), 300 mm (height) and 600 mm (length), at Reynolds number 2.25 × 105. The tests were carried out with tandem and staggered placement of the airfoils in order to determine the optimum position of the wing with respect to the canard and also to determine the lift coefficient at various angles of attack. The CFD code FLUENT 5 was used to investigate the aerodynamic performance of a two-dimensional model to validate the wind tunnel results. The flow interaction was studied in the tandem and staggered arrangements in the wind tunnel as well as by the computational method. The k-ε turbulence model gave exceptionally good results.


Sign in / Sign up

Export Citation Format

Share Document