Greenhouse gas emission from covered windrow composting with controlled ventilation

2011 ◽  
Vol 30 (2) ◽  
pp. 155-160 ◽  
Author(s):  
Evgheni Ermolaev ◽  
Mikael Pell ◽  
Sven Smårs ◽  
Cecilia Sundberg ◽  
Håkan Jönsson

Data on greenhouse gas (GHG) emissions from full-scale composting of municipal solid waste, investigating the effects of process temperature and aeration combinations, is scarce. Oxygen availability affects the composition of gases emitted during composting. In the present study, two experiments with three covered windrows were set up, treating a mixture of source separated biodegradable municipal solid waste (MSW) fractions from Uppsala, Sweden, and structural amendment (woodchips, garden waste and re-used compost) in the volume proportion 1:2. The effects of different aeration and temperature settings on the emission of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) during windrow composting with forced aeration following three different control schemes were studied. For one windrow, the controller was set to keep the temperature below 40 °C until the pH increased, another windrow had minimal aeration at the beginning of the process and the third one had constant aeration. In the first experiment, CH4 concentrations (CH4:CO2 ratio) increased, from around 0.1% initially to between 1 and 2% in all windrows. In the second experiment, the initial concentrations of CH4 displayed similar patterns of increase between windrows until day 12, when concentration peaked at 3 and 6%, respectively, in two of the windrows. In general, the N2O fluxes remained low (0.46 ± 0.02 ppm) in the experiments and were two to three times the ambient concentrations. In conclusion, the emissions of CH4 and N2O were low regardless of the amount of ventilation. The data indicates a need to perform longer experiments in order to observe further emission dynamics.

2019 ◽  
Vol 25 (4) ◽  
pp. 462-469
Author(s):  
Kanchan Popli ◽  
Jeejae Lim ◽  
Hyeon Kyeong Kim ◽  
Young Min Kim ◽  
Nguyen Thanh Tuu ◽  
...  

This study is proposing a System Dynamics Model for estimating Greenhouse Gas (GHG) emission from treating Municipal Solid Waste (MSW) in South Korea for years 2000 to 2030. The government of country decided to decrease the total GHG emission from waste sector in 2030 as per Business-as-usual level. In context, four scenarios are generated to predict GHG emission from treating the MSW with three processes i.e., landfill, incineration and recycling. For prior step, MSW generation rate is projected for present and future case using population and waste generation per capita data. It is found that population and total MSW are directly correlated. The total population will increase to 56.27 million and total MSW will be 21.59 million tons in 2030. The methods for estimating GHG emission from landfill, incineration and recycling are adopted from IPCC, 2006 guidelines. The study indicates that Scenario 2 is best to adopt for decreasing the total GHG emission in future where recycling waste is increased to 75% and landfill waste is decreased to 7.6%. Lastly, it is concluded that choosing proper method for treating the MSW in country can result into savings of GHG emission.


2021 ◽  
Vol 47 (2) ◽  
pp. 332-348
Author(s):  
Tariq Umar

Reduction in emissions is the key to tackle climate change issues and achieve environmental sustainability. The Gulf Cooperation Council member countries however, not only generate the highest quantity of MSW/capita when compared globally but also in most of these countries such waste is just dumped at different landfill stations. In Oman, the total quantity of MSW stood at 2.0 million tonnes/year. The emission from this waste is estimated at 2,989,467 tonnes/year (CO2 Equivalent). This article attempts to develop frameworks that considered landfilling, composting, and recycling of MSW and compared the emissions of these frameworks. The framework (F2) which proposes the landfilling and composting process for the organic waste which normally goes to landfills results in an increase of emissions by 7% as compared to landfill practice. Similarly, the samples of MSW collected in Oman show a good amount of recycling waste. The framework (F3) which considers the landfill, composting, and recycling reduced the total Greenhouse Gas emissions from 2,989,467 tonnes/year to 2,959,735 tonnes/year (CO2 Equivalent); representing a total reduction of 1% in emissions. Although composting increases the emissions, however, considering composting and recycling will not only reduce the burden on landfills but will promote agricultural and industrial activates.


2020 ◽  
Vol 10 (5) ◽  
pp. 1673 ◽  
Author(s):  
Chunlin Xin ◽  
Tingting Zhang ◽  
Sang-Bing Tsai ◽  
Yu-Ming Zhai ◽  
Jiangtao Wang

The Chinese government is committed to ensuring separation of municipal solid waste (MSW), promoting the integrated development of the MSW management system with the renewable resource recovery system, and achieving construction of ecological civilization. Guided by the methods in Intergovernmental Panel on Climate Change (IPCC) guidelines, the greenhouse gas (GHG) emissions under five waste disposal scenarios in Beijing under the life cycle framework were assessed in this research. The study included collection and transportation, as well as three end disposal methods (sanitary landfill, incineration, and composting), and the emission reduction benefits of electricity generation from incineration and recycling of renewable resources were taken into account. The results show that an emission reduction benefit of 70.82% could be achieved under Scenario 5 in which kitchen waste and recyclables are sorted and recycled and the residue is incinerated, and the selection of the optimal strategy was not affected by changes in the separation rate. In addition, landfill would emit more GHG than incineration and composting. The results of this study are helpful for the government to make a decision on MSW management considering the goal of GHG emission reduction.


Author(s):  
Brian Bahor ◽  
Keith Weitz ◽  
Andrew Szurgot

Municipal solid waste (MSW) management is internationally recognized for its potential to be both a source and mitigation technology for greenhouse gas (GHG) emissions. Historically, GHG emission estimates have relied upon quantitative knowledge of various MSW components and their carbon contents, information normally presented in waste characterization studies. Aside from errors associated with such studies, existing data do not reflect changes over time or from location to location and are therefore limited in their utility for estimating GHG emissions and mitigation due to proposed projects. This paper presents an alternative approach to estimate GHG emissions and mitigation using the concept of a carbon balance, where key carbon quantities are determined from operational measurements at modern municipal waste combustors (MWCs).


2019 ◽  
Vol 45 (4) ◽  
pp. 441-449
Author(s):  
Riham A. Mohsen ◽  
Bassim Abbassi ◽  
Animesh Dutta ◽  
David Gordon

More light is being shed continually on the environmental impacts of municipal solid waste due to the increasing amounts of waste generated and the related greenhouse gas emissions. Emissions from MSW account for 20% of Canadian greenhouse gas (GHG) emissions and accordingly, waste legislation in Ontario demands high waste recovery and a moving towards a circular economy. This study evaluates the current municipal solid waste management in the City of Guelph and assesses possible alternative scenarios based on the associated GHG emissions. Waste Reduction Model (WARM) that was developed by the US-EPA has been used to quantify the GHG emissions produced over the entire life cycle of the MSW management scenario. Sensitivity analysis was also conducted to investigate the influence of some scenarios on the overall GHG emissions. It has been found that one ton of landfilled waste generates approximately 0.39 ton of carbon dioxide equivalent (CO2Eq). It was also found that the current solid waste scenario has a saving of 36086 million ton of CO2Eq (MCO2Eq). However, the results showed that the scenario with enhanced waste-to-energy, reduction at source and recycling has resulted in a high avoided emissions (0.74 kg CO2Eq/kg MSW). The anaerobic Digestion scenario caused the lowest avoided emissions of 0.39 kg CO2Eq/kg MSW. The net avoided emissions for reduction at source scenario were found to be the same as that found by the current scenario (0.4 kg CO2Eq/kg MSW). The sensitivity analysis of both reduction at source and recycling rates show a linear inverse proportional relationship with total GHG emissions reduction.


Sign in / Sign up

Export Citation Format

Share Document