Use of construction and demolition solid wastes for basket gabion filling

2020 ◽  
Vol 38 (12) ◽  
pp. 1321-1330
Author(s):  
João Alexandre Paschoalin Filho ◽  
Diego Gonçalves Camelo ◽  
David de Carvalho ◽  
António José Guerner Dias ◽  
Brenno Augusto Marcondes Versolatto

Construction and demolition wastes have been studied by technical means aiming at the development of management tools to reduce their environmental impacts. Among these, recycling can be highlighted. This paper aims at the technical assessment of basket gabions filled with construction and demolition solid waste. Gabions are usually used for retaining walls construction, and these are commonly filled with rocks. Retaining walls are essential for earthfill slopes stabilization, and they must have proper characteristics of strength. However, depending on the slope height or the technical responsibility of the retaining wall, alternative materials with proper characteristics could be used to fill the gabions. The use of recycled material for gabion filling could reduce environmental impacts and costs caused by retaining wall construction. So, basket gabion cells were filled with construction solid waste and basaltic rocks, both crushed into coarse granulometry aiming to compare technical characteristics among them. The performed laboratory tests showed that the horizontal and vertical displacements determined for gabion filled with wastes were near to those obtained for gabions filled with basaltic rocks for a retaining wall of 5 m and up. In conclusion, it can be drawn that basket gabions filled with construction and demolition waste may be a technical alternative for civil construction, reducing environmental impacts and raw material consumption for retaining wall execution.

2019 ◽  
Vol 225 ◽  
pp. 716-727 ◽  
Author(s):  
Miia Liikanen ◽  
Kaisa Grönman ◽  
Ivan Deviatkin ◽  
Jouni Havukainen ◽  
Marko Hyvärinen ◽  
...  

2016 ◽  
Vol 881 ◽  
pp. 346-350 ◽  
Author(s):  
Luzana Leite Brasileiro ◽  
Fátima Maria de Souza Pereira ◽  
Pablo de Abreu Vieira ◽  
José Milton Elias de Matos

Every year, there is a considerable increase in the exploitation of deposits to supply the market for aggregates. On the other hand, so does the production of solid waste from construction and demolition waste (CDW). In 2010 Brazil approved the PNRS (National Policy on Solid Waste), which sets out how the country should have their waste, encouraging recycling and sustainability. As an alternative to the above problem, this paper aims to investigate the feasibility of partial and total replacement of the asphalt concrete aggregates by recycled aggregates from CDW in order to reduce the environmental impacts caused by the operation of quarries and give an adequate final destination the residue produced by man in construction. Were carried out five (05) projects mixture of: the first (parameter of our research) used only natural aggregates (0% CDW) in the second, third and fourth replaced 25%, 50% and 75% respectively of natural aggregate by the recycled aggregate and the fifth and last, used only recycled aggregates (100% CDW). They carried out the characterization of the aggregates by means of physico-chemical and mechanical, analyzing them with reference based on specific standards paving. For mixtures, they calculated the volumetric parameters and performed mechanical tests of tensile strength and stability. The results indicate that the recycled aggregate, in a defined proportion, can replace the natural aggregate in the flexible pavements


2021 ◽  
pp. 0734242X2110291
Author(s):  
Navarro Ferronato ◽  
Gabriela Edith Guisbert Lizarazu ◽  
Marcelo Antonio Gorritty Portillo ◽  
Luca Moresco ◽  
Fabio Conti ◽  
...  

Construction and demolition waste (CDW) management in developing countries is a global concern. The analysis of scenarios and the implementation of life cycle assessment (LCA) support decision-makers in introducing integrated CDW management systems. This paper introduces the application of an LCA in La Paz (Bolivia), where CDW is mainly dumped in open areas. The aim of the research is to evaluate the benefits of inert CDW recycling in function of the selective collection rate, defined as the amount of waste (%wt.) sorted at the source in relation to the total waste amount produced, and the distances from the CDW generation to the material recycling facility. The outcomes of the research suggest that increasing the selective collection rates (5% to 99%) spread the importance of transportation distances planning since it affects the magnitude of the environmental impacts (1.05 tCO2-eq to 20.7 tCO2-eq per km traveled). Transportation limits have been found to be lower than about 40 km in order to make recycling beneficial for all environmental impacts and for all selective collection rate, with the eutrophication potential as the limiting indicator. The theoretical analysis suggests implementing LCA with primary data and involving statistics related to the transportation of virgin materials avoided thanks to recycling. The outcomes of the research support the implementation of CDW recycling in developing countries since it has been found that material recovery is always beneficial.


2021 ◽  
Vol 13 (17) ◽  
pp. 9625
Author(s):  
Ambroise Lachat ◽  
Konstantinos Mantalovas ◽  
Tiffany Desbois ◽  
Oumaya Yazoghli-Marzouk ◽  
Anne-Sophie Colas ◽  
...  

The demolition of buildings, apart from being energy intensive and disruptive, inevitably produces construction and demolition waste (C&Dw). Unfortunately, even today, the majority of this waste ends up underexploited and not considered as valuable resources to be re-circulated into a closed/open loop process under the umbrella of circular economy (CE). Considering the amount of virgin aggregates needed in civil engineering applications, C&Dw can act as sustainable catalyst towards the preservation of natural resources and the shift towards a CE. This study completes current research by presenting a life cycle inventory compilation and life cycle assessment case study of two buildings in France. The quantification of the end-of-life environmental impacts of the two buildings and subsequently the environmental impacts of recycled aggregates production from C&Dw was realized using the framework of life cycle assessment (LCA). The results indicate that the transport of waste, its treatment, and especially asbestos’ treatment are the most impactful phases. For example, in the case study of the first building, transport and treatment of waste reached 35% of the total impact for global warming. Careful, proactive, and strategic treatment, geolocation, and transport planning is recommended for the involved stakeholders and decision makers in order to ensure minimal sustainability implications during the implementation of CE approaches for C&Dw.


2019 ◽  
Vol 37 (2) ◽  
pp. 176-185 ◽  
Author(s):  
Geraldo C Oliveira Neto ◽  
José MF Correia

The aim of this study was to assess the economic and environmental advantages of implementing reverse logistics to recycle solid waste from construction companies. The adopted research method was based on a systematic literature review and two case studies. For the economic assessment, the return on investment, the internal rate of return, and the discounted payback factors were considered, while the material intensity factor was used for the environmental impact assessment. This study shows that there are economic and environmental advantages associated with the use of reverse logistics for solid waste treatment and recycling. In 2016, the purchase of recycled blocks resulted in a profit of over US$45,000 for one company, and another company earned almost US$250,000 in the same year by recycling solid waste from manufacturing blocks and selling iron, wood, paper, and plastics. Furthermore, the environmental impact was reduced. This paper contributes to the dissemination of knowledge regarding the advantages of adopting reverse logistics for recycling construction and demolition waste, and creates new opportunities for companies.


2021 ◽  
Vol 13 (22) ◽  
pp. 12659
Author(s):  
Ana Antunes ◽  
Ricardo Martins ◽  
José Dinis Silvestre ◽  
Ricardo do Carmo ◽  
Hugo Costa ◽  
...  

This paper outlines a methodology for structuring a generic database of environmental impacts on the end-of-life phase of buildings, which can be used at the national level, in accordance with European standards. A number of different options are also considered for managing construction and demolition waste (CDW), as well as for promoting the circularity of materials in construction. The database structure has been developed for use by the main stakeholders who decide the disposal scenario for the main CDW flows, assess waste management plans, and identify the corresponding environmental aspects. The impact categories considered in this paper are global warming potential (GWP) and the abiotic depletion potential of fossil fuels (ADP (f.f.)). This lifecycle assessment (LCA) database further facilitates the identification of important information, such as possible treatments for CDW, or suppliers of recycled materials for use in new construction. Two demolition case studies were used to confirm the benefits of the proposed database. Two demolition scenarios are assessed—traditional and selective—in order to demonstrate the advantage of selective demolition in waste management. The results obtained from the environmental assessment of CDW flows demonstrate that the proposed database can be an important and useful tool for decision making about the end-of-life of construction materials, as it is designed to maximize their reuse and recycling. An innovative online platform can be created based on this database, contributing to the reduction of the environmental impacts associated with the end-of-life phase of buildings.


2005 ◽  
Vol 30 (1) ◽  
pp. 33-43
Author(s):  
Jia Beisi

Each person in Hong Kong produces three times more waste than that of Singapore. This is because a large portion of the waste in Hong Kong is from the construction sector. Re-decoration work carried out by dwellers in Hong Kong is one of the major sources of the construction and demolition waste. Development of flexible reusable infill systems with high recycling potential is significant. A number of these systems are currently used, mainly in public and commercial buildings. They may have potential to be applied in residential buildings in the future. This paper starts with an introduction to the infill systems applied in open building history. It then points out the need to investigate the development of infill processes by integrating infill products available in the market. The paper further introduces current open building studies on reusability of infill systems and addresses the problem that there is a lack of quantitative information on embodied energy and other environmental impacts of infill systems. In the methodology section the paper describes five types of partition walls selected, ranging from low flexibility to high flexibility. Applying an evaluation model for environmental impact, the paper analyzes embodied energy intensity, and environmental impacts of each partition systems in two simulated situations. One is in a two room unit of a public housing prototype and the other is in private apartment. It concludes that partition walls with higher flexibility are highly intensive in their embodied energy. In other environmental impacts, especially recycling potential, flexible partition wall panels exceed that of conventional block-work partitions. The study will enable more complete information to be obtained concerning the environmental impact of infill components and will assist architects and other building professional wisely apply open building design concepts.


Sign in / Sign up

Export Citation Format

Share Document