Low-temperature thermal pretreatment process for recycling inner core of spent lithium iron phosphate batteries

2020 ◽  
pp. 0734242X2095740
Author(s):  
Haijun Bi ◽  
Huabing Zhu ◽  
Lei Zu ◽  
Yong Gao ◽  
Song Gao ◽  
...  

Spent lithium iron phosphate (LFP) batteries contain abundant strategic lithium resources and are thus considered attractive secondary lithium sources. However, these batteries may contaminate the environment because they contain hazardous materials. In this work, a novel process involving low-temperature heat treatment is used as an alternative pretreatment method for recycling spent LFP batteries. When the temperature reaches 300°C, the dissociation effect of the anode material gradually improves with heat treatment time. At the heat treatment time of 120 minutes, an electrode material can be dissociated. The extension of heat treatment time has a minimal effect on quality loss. The physicochemical changes in thermally treated solid cathode and anode materials are examined through scanning electron microscopy with energy-dispersive X-ray spectroscopy. The heat treatment results in the complete separation of the materials from aluminium foil without contamination. The change in heat treatment temperature has a small effect on the quality of LFP material shedding. When the heat treatment temperature reaches 300°C and the time reaches 120 minutes, heat treatment time increases, and the yield of each particle size is stable and basically unchanged. The method can be scaled up and may reduce environmental pollution due to waste LFP batteries.

Author(s):  
Shouyu Zhang ◽  
Junfu Lu ◽  
Jianmin Zhang ◽  
Qing Liu ◽  
Guangxi Yue

The effect of heat treatment on the reactivity and crystallinity of char prepared from the vitrinite of two coals (YX, JJ) was investigated by using XRD and TGA in this paper. The results from TGA show that the reactivity of the chars from YXV and JJV decreases with the increase of heat treatment temperature. The reactivity of YXV char decreases quickly and significantly as heat treatment time increases. However, after heat treatment time of 60 min, it decreases slowly. The effect of heat treatment time on the reactivity of JJV char is small. The results from XRD show that the crystallinity of coal-char is determined by the intensity of heat treatment. When heat treatment time is more than 60 minutes, the turbostratic crystallite of YXV char prepared under 900°C changes remarkably and becomes more orderly. The aromatic layer stacking heights (Lc) of YXV Char when heat treated above 900°C increased with the increase of heat treatment time. The effect of heat treat time on Lc of JJV char is small, but under heat treatment temperature of 1200°C, the crystalline of JJV char grows distinctly. There is a good parallel relationship between the crystalline growth and deactivation of the chars. It can be concluded that the growth of the crystalline is the main reason for the deactivation of coal-char.


2012 ◽  
Vol 512-515 ◽  
pp. 1686-1689
Author(s):  
Jie Chen ◽  
Le Fu Mei ◽  
Li Bing Liao

In this paper, porous carbon has been used to carry TiO2 and TiO2-N by a sol-gel process. The effect of soaking time, heat treatment temperature, and heat treatment time on the carrying efficiency have been studied. XRD experiments indicated that TiO2 and TiO2-N crystallized in anatase and rutile with the ratio of 3∶2. SEM images showed that island-like TiO2 and TiO2-N particles with diameters in the range of 1-5um, the biggest size is about 10um, were evenly coated on the surface of the porous carbon.


2011 ◽  
Vol 228-229 ◽  
pp. 878-882
Author(s):  
Guan Jun Liu ◽  
Xin Hua Mao ◽  
Jun Cao ◽  
Zhou Yu

Hardness of electronless Ni-P alloy plating which have five different phosphorus content were investigated with HX-1000 type microscopic Vickers hardness tester, respectively. Phosphorus content of Ni-P platings were investigated by Quanta 200 type scanning electron microscope and Oxford Energy Disperse Spectroscopy Heat treatment temperature and time of the different platings were optimized and analysed by Uniform Design method, respectively. The results show that correlation consist between maximum hardness of the Ni-P alloy plating and heat treatment temperature, not heat treatment time under the experimental condition which the heat treatment time is between one hour and five hours, and maximal value of the plating hardness appears when the heat treatment temperature is 400-430 Celsius degree. Maximal hardness value of the electronless Ni-P alloy plating increases with increase of their phosphorus content under heat treatment condition.


2020 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Bo-Kyung Choi ◽  
Soo-Jin Park ◽  
Min-Kang Seo

Carbon fibers (CFs) were plated with nickel-phosphorus (Ni-P) using an electroless plating process. The effects of the process parameters such as heat treatment temperature, heat treatment time, and the pH of the plating bath on electroless Ni-P plating were investigated. The structure, elemental composition, and thermal and electrical properties of Ni-P plated CFs (MCF) were characterized by X-ray diffraction (XRD), a four-probe volume resistivity tester, and an infrared thermal imaging camera, respectively. The XRD indicated the presence of amorphous and crystalline phases of Ni and Ni-P. The MCF were able to perform at high temperatures because of their higher thermal conductivity. A heat treatment temperature of 300 °C, a heat treatment time of 4 h, and a pH of 8.5 were found to be optimum for obtaining MCF with desirable thermal and electrical properties.


2020 ◽  
Vol 38 (8) ◽  
pp. 911-920
Author(s):  
Haijun Bi ◽  
Huabing Zhu ◽  
Lei Zu ◽  
Yong Gao ◽  
Song Gao ◽  
...  

The consumption of lithium iron phosphate (LFP)-type lithium-ion batteries (LIBs) is rising sharply with the increasing use of electric vehicles (EVs) worldwide. Hence, a large number of retired LFP batteries from EVs are generated annually. A recovery technology for spent LFP batteries is urgently required. Compared with pyrometallurgical, hydrometallurgical and biometallurgical recycling technologies, physical separating technology has not yet formed a systematic theory and efficient sorting technology. Strengthening the research and development of physical separating technology is an important issue for the efficient use of retired LFP batteries. In this study, spent LFP batteries were discharged in 5 wt% sodium chloride solution for approximately three hours. A specially designed machine was developed to dismantle spent LFP batteries. Extending heat treatment time exerted minimal effect on quality loss. Within the temperature range of 240°C–300°C, temperature change during heat treatment slightly affected mass loss. The change in heat treatment temperature also had negligible effect on the shedding quality of LFP materials. The cathode material and the aluminium foil current collector accounted for a certain proportion in a sieve with a particle size of −1.25 + 0.40 mm. Corona electrostatic separation was performed to separate the metallic particles (with a size range of –1.5 + 0.2 mm) from the nonmetallic particles of crushed spent LFP batteries. No additional reagent was used in the process, and no toxic gases, hazardous solid waste or wastewater were produced. This study provides a complete material recovery process for spent LFP batteries.


2013 ◽  
Vol 781-784 ◽  
pp. 2680-2684
Author(s):  
Kan Lai ◽  
Mei Yu Chen ◽  
Run Jun Sun ◽  
Hong Sun

In this work, the crimp properties of PTT/PET bicomponent filament with different component ratios were investigated. The results show that, after boiling water treatment for 15 minutes, the crimpability of 50/50 component ratio is superior to that of 40/60 and 60/40 component ratio. Heat treatment can realize the shrinkage difference of the two components in a biocomponent filament and enable the biocomponent filament to have good crimpability and bulkiness. In addition, different heat treatments, heat treatment time and heat treatment temperature can also bring different crimp effects to the biocomponent filaments.


2019 ◽  
Vol 285 ◽  
pp. 146-152
Author(s):  
Nai Yong Li ◽  
Han Xiao ◽  
Chi Xiong ◽  
De Hong Lu ◽  
Rong Feng Zhou

The semi-solid extruded ZCuSn10P1 copper alloy were annealed at different temperatures and time. The influences of heat treatment temperature and holding time on the microstructure of semi-solid ZCuSn10P1 copper alloy were investigated. The results show that with the increase of heat treatment temperature, the morphology of the semi-solid microstructure was improved, the sharp angle around the primary phase α-Cu and the liquid droplets were reduced. With the increase of heat treatment time, the solid-liquid segregation of the semi-solid structure was improved. The average grain size of the solid phase increased with the increasing of the holding time. After heat treatment, the solid solubility of the primary phase α-Cu increased, and the Sn and P elements in the liquid phase continued to diffuse to the primary phase α-Cu. The microstructure of semi-solid copper alloy was the most uniform after heat treatment at 350°C for 120 min.


2013 ◽  
Vol 650 ◽  
pp. 612-615
Author(s):  
Prachya Peasura ◽  
Lersak Sumarn

The research was study the effect of post weld heat treatment parameters on microstructure and hardness in heat affected zone. The specimen was carbon steel AISI 1050 which thickness of 6 mm. The experiments with full factorial design. The factors used in this study were post weld heat treatment(PWHT) temperature of 500, 550, 600, 650 and post weld heat treatment time of 10 and 15 hour. The welded specimens were tested by tensile strength testing and hardness testing according to ASTM code. The result showed that both of post welds heat treatment temperature and post weld heat treatment time had interaction on hardness at 95% confidential (P value < 0.05). A factor affecting the hardness was the most PWHT temperature 550 ๐C and PWHT time 10 hr. of 279 HV. Microstructure can be concluded that low PWHT temperature and time effect on temper martensite with a coarse grain and martensite scattered throughout. Martensite was a smaller and greater fine grain, the ferrite and the volume decrease due to a higher temperature.This research can be used as data in the following appropriate PWHT parameters to carbon steel weld.


2012 ◽  
Vol 460 ◽  
pp. 218-221
Author(s):  
Dong Mei Zhao ◽  
Xue Peng Liu

The heat treatment temperature on the influence of the material structure and properties is discussed. At 710 °C the synthesis of LiFePO4 crystallization is complete, morphology, and particle size is moderate, which has the best electrochemical performance. Sphere of lithium iron phosphate is synthesized by ethylene glycol solvent under low temperature heat synthesis method, which can give a relatively high tap density of 1.6g•cm-3


Sign in / Sign up

Export Citation Format

Share Document