Environmentally friendly automated line for recovering aluminium and lithium iron phosphate components of spent lithium-iron phosphate batteries

2021 ◽  
pp. 0734242X2098206
Author(s):  
Haijun Bi ◽  
Huabing Zhu ◽  
Jialin Zhan ◽  
Lei Zu ◽  
Yuxuan Bai ◽  
...  

Lithium iron phosphate (LFP) batteries contain metals, toxic electrolytes, organic chemicals and plastics that can lead to serious safety and environmental problems when they are improperly disposed of. The published literature on recovering spent LFP batteries mainly focuses on policy-making and conceptual design. The production line of recovering spent LFP batteries and its detailed operation are rarely reported. A set of automatic line without negative impact to the environment for recycling spent LFP batteries at industrial scale was investigated in this study. It includes crushing, pneumatic separation, sieving, and poison gas treatment processes. The optimum retaining time of materials in the crusher is 3 minutes. The release rate is the highest when the load of the impact crusher is 800 g. An air current separator (ACS) was designed to separate LFP from aluminium (Al) foil and LFP powder mixture. Movement behaviour of LFP powder and Al foil in the ACS were analysed, and the optimized operation parameter (35.46 m/s) of air current speed was obtained through theoretical analysis and experiments. The weight contents of an Al foil powder collector from vibrating screen-3 and LFP powder collector from bag-type dust collector are approximately 38.7% and 52.4%, respectively. The economic cost of full manual dismantling is higher than the recovery production line. This recycling system provides a feasible method for recycling spent LFP batteries.

Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 842 ◽  
Author(s):  
Yanqing Fu ◽  
Qiliang Wei ◽  
Gaixia Zhang ◽  
Yu Zhong ◽  
Nima Moghimian ◽  
...  

In this work, we investigated three types of graphene (i.e., home-made G, G V4, and G V20) with different size and morphology, as additives to a lithium iron phosphate (LFP) cathode for the lithium-ion battery. Both the LFP and the two types of graphene (G V4 and G V20) were sourced from industrial, large-volume manufacturers, enabling cathode production at low cost. The use of wrinkled and/or large pieces of a graphene matrix shows promising electrochemical performance when used as an additive to the LFP, which indicates that the features of large and curved graphene pieces enable construction of a more effective conducting network to realize the full potential of the active materials. Specifically, compared to pristine LFP, the LFP/G, LFP/G V20, and LFP/G V4 show up to a 9.2%, 6.9%, and 4.6% increase, respectively, in a capacity at 1 C. Furthermore, the LFP combined with graphene exhibits a better rate performance than tested with two different charge/discharge modes. Moreover, from the economic and electrochemical performance view point, we also demonstrated that 1% of graphene content is optimized no matter the capacity calculated, based on the LFP/graphene composite or pure LFP.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 375 ◽  
Author(s):  
César Peralta P. ◽  
Giovani Vieira ◽  
Simon Meunier ◽  
Rodrigo Vale ◽  
Mauricio Salles ◽  
...  

Greenhouse gas emissions are one of the most critical worldwide concerns, and multiple efforts are being proposed to reduce these emissions. Shipping represents around 2% of global CO 2 emissions. Since ship power systems have a high dependence on fossil fuels, hybrid systems using diesel generators and batteries are becoming an interesting solution to reduce CO 2 emissions. In this article, we analyze the potential implementation of Li-ion batteries in a platform supply vessel system through simulations using HOMER software (Hybrid Optimization Model for Multiple Energy Resources). We evaluate the impact of battery characteristics such as round trip efficiency, rated power, and energy capacity. We also evaluate the potential CO 2 emissions reduction that could be achieved with two of the most common types of Li-ion batteries (lithium titanate, lithium iron phosphate). Furthermore, we consider that the Li-ion batteries are installed in a 20 ft container. Results indicate that the lithium iron phosphate battery has a better performance, even though the difference between both technologies is lower than 1% of total emissions. We also analyze the potential emissions reduction for different parts of a mission to an offshore platform for different configurations of the ship power system. The most significant potential CO 2 emissions reduction among the analyzed cases is 8.7% of the total emissions, and it is achieved by the configuration including the main and auxiliary diesel engines as well as batteries. Finally, we present managerial implications of these results for both companies operating ships and ship building companies.


Author(s):  
Aleff Omar Shah Nordin ◽  
Fathilah Ismail ◽  
Nurain Yasmin Mohd Jamal

The purpose of this research was to identify the perceptions of the local community toward tourism development impacts on Perhentian Island. Specifically, the research examined the local community’s perceptions of socio-cultural impacts, economic impacts, and environmental impacts of tourism development. The research also examined the relationship between the impacts of tourism development on the local community’s quality of life (QOL). This research was conducted using a quantitative approach by obtaining responses from 272 local community respondents on Perhentian Island. A household survey based on purposive sampling techniques was conducted to select a suitable sample. The findings of the study revealed that the positive impacts of tourism development outweighed the negative impact. Based on local community perceptions, they believed that tourism development improved their quality of life. This study also finds the impact of social-cultural benefit, economic benefits, economic cost, and environmental benefits have a significant relationship with quality of life. However, there is a negative relationship between the impact of social-cultural cost and environment cost on the quality of life. The findings of this study are important for planners and developers in planning strategic and sustainable tourism development on tourism destinations.


2017 ◽  
Vol 24 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Yuan Ma ◽  
Dajun Liu

AbstractThe research on impurity in the lithium iron phosphate has been a hot topic. Especially when prepared by the solid state method, the impurities occurred easily through high-heat sintering. But some impurity is not completely bad for the cell performance, such as Fe2P. In this paper, the influence of Fe2P has been researched. Using the magnetic separation method, the high and low contents of Fe2P in lithium iron phosphate are obtained and then compared with the primary sample. Results show that the Fe2P phase helps to improve the rate and cycling performances, but a too high content will decrease the specific capacity of the sample due to the low content of active material. It is proven with the electrochemical measurement that the Fe2P phase could enhance the electrical conductivity of cathode, but it gives electrochemical inactivity. It can be concluded that the high rate or high capacity types LiFePO4 could be obtained by controlling the content of Fe2P through adjusting the preparation process.


2019 ◽  
Vol 37 (4) ◽  
pp. 374-385 ◽  
Author(s):  
Haijun Bi ◽  
Huabing Zhu ◽  
Lei Zu ◽  
Shuanghua He ◽  
Yong Gao ◽  
...  

A novel approach to recycling of copper and aluminum fragments in the crushed products of spent lithium iron phosphate batteries was proposed to achieve their eco-friendly processing. The model of pneumatic separation that determines the optimal airflow velocity was established using aerodynamics. The influence of the airflow velocity, and the density and thickness, and their ratios, of the aluminum and copper fragments on pneumatic separation were evaluated. The results show that the optimal airflow velocities of copper and aluminum fragments with and without the electrode materials are 3.27m/s and 1.67m/s, respectively. The accuracy and reliability of the present model was verified using a pneumatic separation experiment. It is concluded that graded pneumatic separation is unnecessary for the crushed particle size more than 9 mm. The experimentally determined optimal airflow velocity of the copper and aluminum fragments with and without the electrode materials is 3.3m/s and 1.7m/s, respectively. The mass fractions of the copper and aluminum fragments upon removal of the electrode materials after pneumatic separation are 97% and 96%, respectively, and both with the electrode material achieve 97.0%. The theoretically obtained optimal airflow velocities have good agreements with the experimentally obtained ones.


2021 ◽  
Vol 13 (3) ◽  
pp. 1563
Author(s):  
Živilė Stankevičiūtė ◽  
Eglė Staniškienė ◽  
Joana Ramanauskaitė

As a result of intensive robotisation over the past decade, employees have been constantly experiencing job insecurity, a term which refers to the perceived threat of job loss and the worries related to this threat. Previous studies have supported the detrimental effect of job insecurity on employees; however, the focus on happiness at work is still missing, despite the notion that a happy employee is essentially contributing to sustainable business performance. Trying to narrow the gap, the paper aims at revealing the linkage between job insecurity and happiness at work and its dimensions, namely job satisfaction, affective organisational commitment, and work engagement. Building on the hindrance stressor dimension of the stress model, and conservation of resources and psychological contract theories, the paper claims that a negative relationship exists between the constructs. Quantitative data were collected in a survey of robotised production line operators working in the furniture sector in Lithuania. As predicted, the results revealed that job insecurity had a negative impact on happiness at work as a higher-order construct and all of its dimensions. This finding should be taken seriously by organisations creating a robotised production environment while striving for sustainability.


2015 ◽  
Vol 26 (3-4) ◽  
pp. 116-123
Author(s):  
A. P. Korzh ◽  
T. V. Zahovalko

Recently, the number of published works devoted to the processes of synanthropization of fauna, is growing like an avalanche, which indicates the extreme urgency of this theme. In our view, the process of forming devices to coexist with human and the results of his life reflects the general tandency of the modern nature evolution. Urbanization is characteristic for such a specific group of animals like amphibians, the evidence of which are numerous literature data. Many researchers use this group to assess the bioindicative quality of the environment. For this aim a variety of indicators are used: from the cellular level of life of organization up to the species composition of the group in different territories. At the same time, the interpretation of the results is not always comparable for different areas and often have significantly different interpretations by experts. Urban environment, primarily due to the contamination is extremely aggressive to amphibians. As a consequence, the urban populations of amphibians may be a change in the demographic structure, affecting the reproductive ability of the population, the disappearance of the most sensitive species or individuals, resizing animals, the appearance of abnormalities in the development, etc. At the same time play an important amphibians in the ecosystems of cities, and some species in these conditions even feel relatively comfortable. Therefore, it is interesting to understand the mechanisms of self-sustaining populations of amphibians in urban environments. To assess the impact of natural and anthropogenic factors on the development of amphibian populations were used cognitive modeling using the program Vensim PLE. Cognitive map of the model for urban and suburban habitat conditions were the same. The differences concerned the strength of connections between individual factors (migration, fertility, pollution) and their orientation. In general, factors like pollution, parasites, predators had negative impact on the population, reducing its number. The birth rate, food and migration contributed to raising number of individuals. Some of the factors affected on the strength to of each other as well: the majority of the factors affected the structure of the population, had an influence on the fertility. Thanks to it the model reflects the additive effect of complex of factors on the subsequent status of the population. Proposed and analyzed four scenarios differing strength and duration of exposure. In the first scenario, a one-time contamination occurs and not subsequently repeated. The second and third scenario assumes half board contamination, 1 year (2 scenario) and two years (scenario 3). In the fourth scenario, the pollution affected the population of amphibians constantly. In accordance with the results of simulation, much weaker than the natural populations respond to pollution - have them as an intensive population growth and its disappearance at constant pollution is slow. Changes to other parameters of the model showed that this pollution is the decisive factor -only the constant action leads to a lethal outcome for the populations. All other components of the model have a corrective effect on the population dynamics, without changing its underlying trand. In urban areas due to the heavy impact of pollution maintaining the population is only possible thanks to the migration process – the constant replenishment of diminishing micropopulations of natural reserves. This confirms the assumption that the form of existence metapopulations lake frog in the city. In order to maintain the number of amphibians in urban areas at a high level it is necessary to maintain existing migration routes and the creation of new ones. Insular nature of the placement of suitable habitats in urban areas causes the metapopulation structure of the types of urbanists. Therefore, the process of urbanization is much easier for those species whicht are capable of migration in conditions of city. In the initial stages of settling the city micropopulationis formed by selective mortality of the most susceptible individuals to adverse effects. In future, maintaining the categories of individuals is provided mainly due to migration processes metapopulisation form of the species of existence is supported). It should be noted that the changes in the previous levels are always saved in future. In the case of reorganizations of individuals we of morphology can assume the existence of extremely adverse environmental conditions that threaten the extinction of the micropopulations. 


Sign in / Sign up

Export Citation Format

Share Document